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ABSTRACT: Recently, the implementation architecture of mashups has changed from the existing SOAP-based style 
to the REST style. This is mainly because the REST style has several advantages: lightweight, declarative and easy to 
access. The growing number of available RESTful web services raises a challenging search problem: how should the 
desired web services be located. This paper proposes semantic matching and resource discovery algorithms based on 
the ontology learning method for RESTful web services. These algorithms allow mashup developers to automate the 
discovery and composition of RESTful web services eliminating the need for programmer involvement.We describe an 
experimental study on a collection of 168 RESTful web services. The experimental results show that our approach 
achieves up to 30% improvement for recall performance, and up to 18% for precision performance compared to the 
keyword searching method. 
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I. INTRODUCTION 
 

With the advent of Web 2.0, the use of RESTful web servicesisexpected to overtake that of the traditional SOAP-
based web services. A RESTful web service is a simple web service implemented using HTTP and the principles of 
REST (Representational State Transfer) [1].The growing number of RESTful web services available on the web raises 
the challenging issue of how to locate the desired web services.However, the existing keyword searching methods are 
insufficient for the bad recall and the bad precision. Adding semantics to RESTful web services may help to overcome 
these limitations. 

Although there are several researches that add semantics to SOAP-based web services [2]-[5], the addition of 
semantics to RESTful web services poses a greater challenge. Most RESTful web services do not require a description 
language such as WSDL (Web Service Description Language), as the principal objective of REST is simplicity. The 
lack of this description language makes it difficult to achieve the automated discovery and composition of the web 
services. With RESTful web services gaining more popularity on the web, the interest in RESTful semantic web 
services is growing. 

We recently proposed an ontology learning method to build semantic ontologies automatically [6]. We extend the 
ontology learning method to support thesemantic discovery and automatic composition of RESTful web services 
(which are essential techniquesfor RESTfulsemantic web services). We first introduce the ontology learning method 
and propose the semantic matching and composable resource discovery algorithms for RESTful web services. A 
significant key issue is how to locate the desired web services. The efficient discovery can play a crucial role in 
conducting the composition of web services. 

The remainder of this paper is organized as follows. In Section 2, we begin by introducing the ontology learning 
method.We present the semantic matching algorithmin Section 3 and the composable resource discovery algorithmin 
Section 4.We describe our experimental evaluationin Section 5. Finally, we discuss related work in Section 6 and 
conclude the work in Section 7. 
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II. OVERVIEW OF ONTOLOGY LEARNING METHOD 

 
The successful employment of semantic web services is dependent on the availability of highquality ontologies. 

Building such ontologies is difficult and costly, thus hampering web services deployment. Our ontology learning 
method [6] automatically generates ontologies from WADLs (Web Application Description Languages)[7] and their 
underlying semantics.  

 

A. PARAMETER CLUSTERING 

 
We consider the syntactic information that resides in WADLs, and apply a mining algorithm to obtain their 

underlying semantics. The key ingredient of this technique is to cluster parameter names in the collection of web 
services into semantically meaningful concepts. We utilize the heuristic as the basis of our clustering, in that parameters 
tend to express the same concept if they frequently occur together. This allows us to cluster parameters by exploiting 
the conditional probability of their occurrences in the requests and responses of web service resources. Specifically, we 
are interested in the association rules of the form R:t1⟹t2, where t1 and t2 are two terms. The problem of association 
rules can be computed by using the well-known Apriorialgorithm. 

The support is the probability that t1 and t2 occur in a request/response. The confidence is the probability that t2 
occurs in a request or responses, given that t1 is known to occur in it. Ideally, parameter clustering results should have 
the following two features: the cohesion of a concept (the connections between parameters inside the concept) should 
be strong, and the correlation between concepts (the connections between parameters in different concepts) should be 
weak. We say that t1 is closely associated to t2 if the confidence of the rule R:t1⟹t2 is greater than a threshold value δ 
(i.e., conf(R:t1⟹t2)>δ).To measure the overall quality of a clustering, we define               where coh and cor 
are the average of all the cohesion and correlation values, respectively. Our goal is to obtain a high score that will 
reflect tight connections inside the clusters but loose connections between clusters. 

Our clustering algorithm is a refinement of a classical agglomerative hierarchical clustering. We sort the association 
rules in descending order first by confidence and then by support. At each step, the algorithm selects the highest ranked 
rule that has not been previously considered. If the terms in the rule belong to different clusters, the algorithm merges 
the clusters. We then compute the        score. There are two options: one is the score for the merged result in the 
previous step, and the other is the score for a new result reflecting the merger of two similar clusters. We select the 
option with a higher score. This process is repeated until eventually all result clusters satisfy the best score. 

 

B. PATTERN ANALYSIS 

 
Our pattern analysis technique captures the relationships between the terms contained in a parameter name, and 

match parameters if both the terms are similar and the relationships are equivalent. This approach is derived from the 
observation that people employ similar patterns when composing a parameter name out of multiple terms. In order to 
characterize these patterns, all 8209 parameter names from 168 RESTful web services pulled off the Internet were 
categorized into several buckets. As shown in Table 1, 2435(30%), 752(9%), 608(7%), 472(6%), and 368(5%) 
parameters were defined as the noun phrases Noun1+Noun2, Adjective+Noun, Verb+Noun, Noun1+Noun2+Noun3, and 
Noun1+Preposition+Noun2, respectively. There were 3574(43%) parameters not covered by any of the rules. The 
majority of them (3548 parameters) contain only one token (e.g., city), the others (26 parameters) cannot be tokenized 
according to the rules defined in Table 1. 

Table 1: Pattern of multiple-words. 

Rule Pattern Occurrence Example 

1 
2 
3 
4 
5 

Noun1+Noun2 

Adjective+Noun 

Verb+Noun 

Noun1+Noun2+Noun3 

Noun1+Preposition+Noun2 

2435(30%) 
752(9%) 
608(7%) 
472(6%) 
368(5%) 

companyID 
highTemperature 

updateList 
telephoneAreaCode 
passwordOfAccount 
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The first step in this approach is to capture the relationships between the terms in a parameter and save them in the 

ontology. From the above table, the rules in Table 2 are defined to transform the terms defined in the WADL file into 
ontological concepts and relationships. 

Table 2: Relationship between terms. 

Rule Pattern Relationship Example 

1 
2 
3 
4 
5 

Noun1+Noun2 

Adjective+Noun 

Verb+Noun 

Noun1+Noun2+Noun3 

Noun1+Preposition+Noun2 

Parameter propertyOfNoun1 
Parameter subClassOfNoun 
Parameter subClassOfNoun 
Parameter propertyOfNoun1 
Parameter propertyOfNoun2 

companyIDpropertyOfcompany 
highTemperaturesubClassOfTemperature 
updateListsubClassOfList 
telephoneAreaCodepropertyOftelephone 
passwordOfAccountpropertyOfAccount 

 
The ontology is generated from the set of parameters per the above rules. The next step is to match a query and the 

ontology. By the definitions, two ontological concepts are matched if and only if one of the following is true: 
 

 One concept is a property of the other concept(e.g.,companyIDpropertyOfcompany) 
 One concept is a subclass of the other concept(e.g., highTemperaturesubClassOfTemperature) 
 Concepts are synonyms of each other (e.g., state equivalent province) 

 
Based on the above conditions, our method redefines which terms are actually connected to each other. For example, 

Assume that cityName is to be compared against codeOfCity. The keyword search would not count these as a possible 
match. However, if the city term had the relationships“XpropertyOfY” in its pattern rule, the matching logic will 
return a matching score because these two parameters are closely related (perhaps using the rules 
“cityNamepropertyOfcity” and “codeOfCitypropertyOfcity”). For details, readers may refer to our previous work [6]. 

 

III. SEMANTIC MATCHING ALGORITHM 

 
In this section we describe how to predict the similarity of RESTful web service resources. Intuitively, we consider 

resources to be similar if they take similar inputs and produce similar outputs, and if the relationships between the 
inputs and outputs are similar. We identify a resource with a vector: resource = <description, request, response>. We 
determine a similarity by combining the similarities of individual vector components. Here, we describe how to 
compute the similarities for each of the components. 

To compute the similarity of the description, we consider the tokenized resource path name and description as a bag 
of words, and utilize the TF/IDF method [8]: 

    ሺ   ሻ  ∑            √∑ ሺ   ሻ      ∑ ሺ   ሻ      

 

where    (or    ) represents the weight of term    in description D (or query Q). In order to compute the similarity of 

the concepts represented by the request/response, we first find all clusters that include the term of the tokenized 
request/response parameters. Algorithm 1 shows the process of finding cluster terms procedure. All terms in the 
matched clusters are the relevant terms for each tokenized parameter. We replace each tokenized parameter with its 
corresponding cluster, and then compute asimilarity score. The similarity score is defined to select the best matches for 
the given request/response. Consider a pair of candidate matching requests/responses:    ሺ                 ሻand    (                 ), where    and  denote parameters. The similarity between A and B is given by the following 

formula: 
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       ሺ   ሻ  ∑ ∑       (     )            

 

where,       (     )     {   (     )}for all                
 

Algorithm 1: Finding cluster terms 

1   clusterTerms = Ø 
2   for eachCi in clusterSet 
3          ifCi includes term then 
4                 for all terms in Ci 
5                             terms are added to clusterTerms 
6                 endfor 
7         endif 
8   endfor 
9   return clusterTerms 

 

We use a linear combination to combine the similarity of each component. Each type of similarity is assigned a 
weight based on the user's confidence. The overall similarity is calculated by using Similardes,Similarreq, and Similarres:  

             ሺ          ሻ   (          )   ሺ          ሻ      

 
whereSimilardes,Similarreq, and Similarres are the description, request, and response similarity, respectively. These 
components return a real value between 0 and 1, indicating the degree of similarity. The weights  , , and   are real 
values between 0 and 1; they indicate the degree of confidence. High weight values indicate the user's confidence. 
Please note that the sum of the weights does not have to add up to 1; in our experiments we use equal weights.  

Our semantic matching algorithm based on the clustering technique can improve the recall performance of the 
search engine by introducing semantically meaningful concepts. All matches whose similarity scores exceed 0 are 
assigned to a candidate set. To select the best matches from the candidate set, however, an additional ontological 
pruning step is required. Since theparameter clusteringtechnique of Section 2 considers all terms in a cluster as an 
equivalent concept and ignores hierarchical relationships between the terms, matches might exist that are irrelevant to 
the user's intention (i.e., false positives). Thus, the pruning process is necessary to improve the precision. 

The basic idea to improve the precision of the semantic matching algorithm is to apply the pattern rules defined in 
Table 2. A query is matched against all resources stored in the repository using pre-defined matching rules. Our 
algorithm proceeds in a Greedy fashion. If two concepts are matched to the rules, the weight is set to 1. If two concepts 
are not matched to the rules, then the weight is set to 0 and they are removed from the results. The core procedure for 
the semantic matching algorithm is shown in Algorithm 2.  

 

Algorithm 2:Semantic matching 

1  for each resource S in repository 
2     Compute Similardes=Sim(Qdes, Sdes) 
3     for each term in query request/response 
4        Get clusterTerms from Algorithm 1 
5        Replace term with culsterTerms 
6     endfor 
7     Perform pruning process 
8     Compute Similarreq and Similarres  
9      Compute Similarity 
10 endfor 
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IV. COMPOSABLE RESOURCE DISCOVERY ALGORITHM 

 
Given a query and a collection of RESTful web services stored in the repository, automatically finding a resource 

from the repository that matches the query requirement is the resource discovery problem. For example, we are looking 
for a resource to search a hotel. Table 3 shows the request/response parameters of a query and a resource. In this 
example a service resourceS satisfy the query Q. Q requires hotelName as the response and S produces hotelName and 
confirmNumber. The extra response produced can be ignored. S requires countryCode and nameOfCity as the request 
and Q provides countryID, stateName, and cityName as the request. Aparameter can be matched with the other 
parameter only if there is a semantic relationship between them. Here, although countryCode and countryID are 
different forms, they have the same semantics since they are referred to the same concept. Also nameOfCity and 
cityName have the same semantics since they are properties of the same object (i.e., city). Therefore, the agent is able 
to infer that Q and Srequest parameters have semantically the same classes. 

Table 3: Example of composableresource discovery. 

Resource Request Parameters Response Parameters 

Q 
countryID 
stateName 
cityName 

hotelName 

S 
countryCode 
nameOfCity 

hotelName 
confirmNumber 

 
We describe an algorithm, which issimilar to the one in [9],to support the composition of RESTful web services 

using semantic descriptions. First, we can define the matching criteria as follows: 
 

Definition 1: A resourceSmatches a queryQ when all the response parameters of Q are matched by the response 
parameters of S, and all the request parameters of S are matched by the request parameters of Q. 

 
Definition 1 guarantees that the resource found satisfies the needs of the query, and the query provides all the 

request parameters that the resource needs to operate correctly. Our discovery algorithm is shown in Algorithm 3. This 
algorithm adopts strategies that rapidly prune resources that are guaranteed not to match the query, thus improving the 
efficiency of the system. A query is matched against all resources stored in the repository. Whenever a match between a 
query and resources is found, it is recorded and sorted within the matches according to highest score. A match between 
a query and a resource consists of matching all the response parameters of the query against the response parameters of 
the resource; and all the request parameters of the resource against the request parameters of the query. If one of the 
query's responses is not matched by any of the resource's response, the match fails. Matching between requests is 
computed by the same process, but with the order of the query and resource reversed. The score of a match between 
two requests/responses is calculated by the semantic matching algorithm. 

 

Algorithm 3:Composableresource discovery 

1  record = Ø 
2  for each S in repository 
3     if Matching(Q, S) then append S to record 
4  endfor 
5  sort(record)        
6         
7  Matching(Q, S){    
8     SemanticMatch(Q.response, S.response) 
9     SemanticMatch(S.request, Q.request) 
10 } 
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V. EXPERIMENTAL EVALUATION 

 

A. EXPERIMENT ENVIRONMENT 

 
In our experiments we compared our semantic matching and resource discovery algorithms based on the ontology 

learning method with the traditional keyword searching method. Our objective is to show that we can achieve high 
recall and high precision performance in finding similar resources, and to investigate the contribution of the two 
novelalgorithms (i.e., semantic matching and composable resource discovery) of our method.To run our experiments, 
we extracted a collection of RESTful web services from the ProgrammableWeb site [10]. The site currently has about 
6,000 RESTful web services, and the total number of services is rapidly growing. We first collected the subset which 
associated WADL files for three domains: weather, travel, and mapping. The ProgrammableWeb site allows us to 
manually extract information regarding their functionality description, request, and response. This set contains 168 
RESTful web services and 264 requests/responses. There are a total of 501 terms. During our experiments, while 
manually evaluating the clustering results, we observed that a minimum support of 3% and a minimum confidence of 
80% are reasonable threshold values. 

We measured the overall performance using the recall (R), precision (P), and F-measure (F). The recall is a 
measure of completeness, whereas the precision is a measure of exactness or fidelity. An inverse relationship exists 
between recall and precision, in which it is possible to increase one only at the cost of reducing the other. Usually, the 
recall and precision measures are not discussed in isolation. Rather, both are combined into a single measure, such as 
the F-measure, which is the weighted harmonic mean of the recall and precision. The recall     ሺ   ሻ, where A 
stands for the number of returned relevant operations, B stands for the number of missing relevant operations, and A+B 
stands for the total number of relevant operations. The precision     ሺ   ሻ, where A stands for the number of 
returned relevant operations, C stands for the number of returned irrelevant operations, and A+C stands for the total 
number of returned operations. The F-measure       ሺ   ሻ.  

 

B. RESULTS AND ANALYSIS 

 
Figure1 presents the recall, precision, and F-measure values found via each method. Our experiments compared our 

semantic matching algorithm based on the ontology learning method, which we refer to as ONTO, with WORD and CLST. 
WORD and CLST denote the traditional keyword searching method and the ontology learning method without the 
pattern analysis technique, respectively. The reason for testing the semantic matching algorithm with or without the 
pattern analysis technique is to assess the impact of the ontological pruning process.  

 

 

Figure1:The recall, precision, and F-measure values for different matching methods. 

 
As shown in Figure1, our ONTO method beats all other methods. Its recall, precision, and F-measure are 80%, 35%, 

and 49%, respectively, much higher than those of the WORD and CLST methods. The CLST method significantly 
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improves recall performance; this yields a recall 28% higher than that of WORD, but only improves the precision 
performance slightly. One major cause of this is that the clustering terms exert two-fold effects: On one hand, they 
provide additional evidence, which significantly assists in the number of returned relevant resources.On the other hand, 
they harbour noise that dilutes the high-quality evidence.  

We conduct an additional experiment focusing on the performance of the pattern analysis technique. This 
experiment considers the efficiency of the ontological pruning. The ONTO resultsare shown inFigure1. The precision 
performance by the ontological pruning improves significantly; ONTOachieves a precision 15% higher than that of 
CLST. The ontological pruning makes it possible to search only relevant resources to ensure high performance. In 
conclusion, the ONTO method outperforms the WORD and CLST methods. Interestingly, CLST achieves a precision as 
high as WORD, and a recall as high as ONTO.  

We plot the recall-precision curves (R-P curves) in Figure2. In the R-P curves, the X-axis represents the recall, and 
the Y-axis represents the precision. The curve closest to the upper right-hand corner of the graph indicates the best 
performance. The R-P curves are regarded by the IR community as the most informative graph demonstrating the 
efficacy of a search engine. From these curves, we can observe that ONTO and CLST methods exhibit better 
performance than the WORD method. In particular, our ontology learning method (i.e., ONTO) exhibits the best 
performance with its pattern analysis technique. 

 

 

Figure2:The recall-precision curves for different matching methods. 

 
We also present the recall and precision values of top-3, top-5, and top-10 returned results found from the 

composable resource discovery algorithm. Figure3(a) illustrates the top-k recall comparison. To measure the recall, we 
are interested in the number of returned relevant resources that can be returned within a given set of relevant operations. 
We can see that both ONTO and CLST can achieve satisfying results. For top-3, top-5, and top-10 recalls, ONTO reaches 
98%, 87%, and 77%, respectively, obviously higher than the other two methods. CLST is a little lower at the level of 
top-3, top-5, and top-10, as it measures the similarity based on the underlying semantics. WORD has very low recall, 
because it only matches the keywords from the user’s requests, and the results are coarse. 
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(a) Top-k recall                                          (b) Top-k precision 

Figure3:The top-k recall and precision comparison for different resource discovery methods. 

 
Figure3(b) presents the top-k precision comparison. As shown in this figure, ONTO beats the other two methods in 

each result, since it filters the irrelevant concepts. For top-3, top-5, and top-10 returned results, ONTOprecision is 98%, 
90%, and 77%, respectively. ONTO can improve the precision 22%, 27%, and 31%, respectively, rather than those of 
WORD, 21%, 25%, and 27%, respectively, higher than those of CLST. The figure demonstrates that with the expected 
number of returned results increasing, the rate of performance improvement increases. Therefore, the ONTO method is 
superior to the WORD and CLST methods, because it can improve both recall and precision performance significantly. 

VI. RELATED WORK 

There are two approaches to semantic web services: semantically enabled web services and semantic web 

technologies. The semantically enabled web services can be either SOAP-based or RESTful web services with 
semantic wrappers that weave them into the semantic web. The semantic web technologies are not based on the mindset 
of traditional web services. They acknowledge the fact that the semantic web is for machines, and build upon it 

 

A. SEMANTICALLY ENABLED WEB SERVICES 

 
1) SOAP-based Semantic Web Services 

SAWSDL [2] derived from WSDL-S is a lightweight solution, and is only a W3C semantic web service 
recommendation. It annotates WSDL components such as inputs/outputs with references to ontologies. There are more 
ambitious W3C submissions for semantic web services, including OWL-S [3], WSMO [4], and SWSF [5]. OWL-S is 
based on OWL, which describes the service in terms of profile, process, and grounding. WSMO is based on modeling 
web services using the 4 major elements of ontologies, web services, goals, and mediators. SWSF is one of the latest 
approaches to semantic web services and is built upon experience gained with OWL-S and WSMO. SOAP-based web 
services do not fit well with REST principles; SOAP has one endpoint and many actions on that endpoint, whereas 
REST provides an endpoint for each resource that will be acted upon. 

 
2) RESTful Semantic Web Services 

With RESTful web services gaining more popularity on the web, the interest in RESTful semantic web services is 
growing. SA-REST [11] is similar to SAWSDL, as it semantically annotates RESTful web services. As there are no 
WSDL files for RESTful web services, it adds the annotations to web pages that describe the services. The idea is to 
use Microformats such as GRDDL and RDFa to embed the annotation in HTML files. Another approach was 
introduced by Battle and Benson [12], wherein the Semantic Bridge for Web Services (SBWS) provides custom 
annotations to the WADL documents, which are similar to SAWSDL. A Shortcoming of these approaches is that these 
annotations are both difficult and costly. 
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B. SEMANTIC WEB TECHNOLOGIES 

 
Another part of SBWS [12] involves providing a semantic REST concept. This mapped the commonly accepted 

HTTP methods (GET, PUT, POST, and DELETE) into extended SPARQL commands (SELECT, INSERT, MODIFY, 
and DELETE). The result provides the ability to retrieve, add, update, and remove RDF datasets directly from the 
endpoints already in use in a RESTful web service. Morbidoni et al. [13] developed a Semantic Web Pipes (SWP) for 
resolving RDF data and endpoints for SPARQL queries. Another approach that is based on semantic constructs is 
Triple Space Computing (TSC) [14]. It is based on Tuple Space Computing. The communication is shifted from being 
message oriented as in web services, to reading and writing RDF triples in a shared triple space. TSC has been used in 
both web service coordination and communication. A main drawback of these approaches is that the construction of 
RDF datasets is a relatively time-consuming task. 

 

C. ONTOLOGY LEARNING METHODS 

 
Currently, ontologies are developed manually through the collaboration of highly skilled domain experts and 

ontology engineers. Ontology building is therefore a time-consuming and labour-intensive task whose automation is 
desirable. A number of ontology learning methods have been proposed for the automatic acquisition of semantic 
information.Hess and Kushmerick [15] employ Naive Bayes and SVM machine learning methods to classify WSDL 
files in manually defined task hierarchies. Dong et al. [16] employ a clustering method that clusters parameters present 
in inputs and outputs of operations into parameter concepts. But these clusters are not semantic ontology and just 
simple a set of synonym words. Sabou et al. [17] propose an automatic extracting method that learns domain ontologies 
from textual documentation attached to web services. The limitation of this method is that it is confined to human-
readable documentation, which is not common means of web service descriptions. Guo et al. [18] leverage relationships 
between words in phrases to establish ontological relationships between acquired concepts. But the authors tackle only 
a one-to-one mapping solution by aligning the generated ontology fragments, and taking advantage of active domain 
experts. 

 

VII. CONCLUSIONS AND FUTURE WORK 

 
This paper presents a semantic matching algorithm and acomposasble resource discovery algorithm based on the 

ontology learning method to improve the recall and precision performance of RESTful web services. These algorithms 
can get optimal results by applying strategies that rapidly prune resources that are guaranteed not to match the 
query.Theproposed algorithms are crucial features in the use of RESTful semantic web services.We implemented our 
algorithms using the publicly available open tools (e.g.,CRFTagger, Apriori, and ClusterLib) and experimented on a 
collection of RESTful web services. The experimental results demonstrate that our algorithms significantly improve the 
recall and precision performance relative to the traditional keyword searching method. The results show that our 
method achieves up to 30% improvement for recall performance, and up to 18% for precision performance compared to 
the keyword searching method. 

We are currently developinga system for automatically composingRESTful web services. More specifically, we are 
working in the exciting area of semanticmashups. Our research will focus on specifying RESTful web services, finding 
them, and integrating them to create mashups. Currentmashups require a human who has the domain knowledge and 
can guide the overall composition process. The incorporation of our semantic matching and resource discovery 
algorithms would result in further automation of the mashups. As components of future work, various optimization 
techniques can be applied to the algorithms. 

 
 
 
 
 



 
          ISSN(Online): 2320-9801 

           ISSN (Print):  2320-9798                            

 

 

International Journal of Innovative Research in Computer 

and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 1, Issue 9, November 2013 

 

Copyright to IJIRCCE                            www.ijircce.com     2091 

 

 

ACKNOWLEDGMENT 

 
This research was supported by Basic Science Research Program through the National Research Foundation of 

Korea (NRF) funded by the Ministry of Education, Science, and Technology (No. 2010-0008303). 

 

REFERENCES 

 
[1] Fielding R.,“Architectural styles and the design of network-based software architectures”, PhD thesis, University of California, 2000. 
[2] Kopecky J., Vitvar T., Bournez C., and Farrell J.,“SAWSDL: Semantic annotations for WSDL and XML schema”, IEEE Internet 
Computing,Vol.11, No.6, pp.60-67,2007. 
[3] OWL Services Coalition),“OWL-S: Semantic markup for web services”, OWL-S White Paper, 2004. 
[4] Vitvar T., Zaremba M., Moran M., Zaremba M., and Fensel D.,“SESA: Emerging technology for service-centric environment”, IEEE 
Software,Vol.24,No.6, pp.56-67,2007. 
[5] http://www.w3.org/Submission/SWSF/. 
[6] Lee Y.J. and Kim C.S.,“Building semantic ontologies for RESTfulweb services”, Proceedings of the 6th International Conference on Next 
Generation Web Services Practices, pp.37-40,2010. 
[7] Hadley M.,“Web application description language (WADL)”, http://www.w3c.org/Submission/wadl/. 
[8] Salton G. and Buckley C.,“Term weighting approaches in automatic text retrieval”, Information Processing and Management,Vol.24, No.4, 
pp.513-523,1988. 
[9] Paolucci M., Kawamura T., Payne T., et al., “Semantic matching of web services capabilities”,Proceedings of the 1stInternational Semantic Web 
Conference,pp.333-347, 2002. 
[10] http://www.programmableweb.com/. 
[11] Sheth A., Gomadam K., and Lathem J.,“SA-REST: Semantically interoperable and easier-to-use services and mashups”, IEEE Internet 
Computing,Vol.11, No.6, pp.91-94,2007. 
[12] Battle R. and Benson E.,“Bridging the semantic web and Web 2.0 with representational state transfer (REST)”, Journal of Web 
Semantics,No.6,pp.61-69, 2008. 
[13] Morbidoni C., Phuoc D., Polleres A., Samwald M., and Tummarello G.,“Previewing semantic web pipes”, Proceedings of the 5th European 
Semantic Web Conference on the Semantic web: Research and Applications, pp.843-848,2008. 
[14] Riemer J., Martin-Recuerda F., Ding Y., et al.,“Triple space computing: Adding semantics to space-based computing”, The Semantic Web – 
ASWC 2006, Lecture Notes in Computer Science, 4185, pp.300-306,2006. 
[15] Hess A. and Kushmerick N.,“Learning to attach metadata to web services”,Proceedings of the 2nd International Semantic Web Conference, 
pp.258-273,2003. 
[16] Dong X., Halevy A., Madhavan J., Nemes E., and Zhang J.,“Similarity search for web services”, Proceedings of the 30th VLDB conference, 
pp.372-383,2004. 
[17] Sabou M., Wroe C., Goble C., and Stuckenschmidt H.,“Learning domain ontologies for semantic web service descriptions”, Journal of Web 
Semantics,Vol.3,No.4, pp.340-465,2005. 
[18] Guo H., Ivan A., Akkiraju R., and Goodwin R.,“Learning ontologies to improve the quality of automatic web service matching”,Proceedings of 
IEEE International Conference on Web Services, pp.118-125,2007. 

 

BIOGRAPHY 

 

 
Dr. Yongju Lee 

Hereceived the Ph.D. degree in Information and Communication Engineering, KAIST (Korea 
Advanced Institute of Science and Technology) in 1997, Korea. He is now a Professor in School of 
Computer Information, Kyungpook National University, Sangju, Korea. He has published more than 
60 papers in domestic and international conferences and journals. His current research interests 
include web services, cloud computing, semantic web technology, and mobile applications. Dr. Lee 
may be reached at yongju@knu.ac.kr. 
 

 


