

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 1, Issue 9, November 2013

Copyright to IJIRCCE www.ijircce.com 2082

Semantic Matching and Resource Discovery

Algorithms for RESTful Web Services

Dr.Yongju Lee

 School of Computer Information, Kyungpook National University, Sangju, Korea

ABSTRACT: Recently, the implementation architecture of mashups has changed from the existing SOAP-based style
to the REST style. This is mainly because the REST style has several advantages: lightweight, declarative and easy to
access. The growing number of available RESTful web services raises a challenging search problem: how should the
desired web services be located. This paper proposes semantic matching and resource discovery algorithms based on
the ontology learning method for RESTful web services. These algorithms allow mashup developers to automate the
discovery and composition of RESTful web services eliminating the need for programmer involvement.We describe an
experimental study on a collection of 168 RESTful web services. The experimental results show that our approach
achieves up to 30% improvement for recall performance, and up to 18% for precision performance compared to the
keyword searching method.

Keywords: Semantic matching, resource discovery, RESTful web service, similarity, ontology.

I. INTRODUCTION

With the advent of Web 2.0, the use of RESTful web servicesisexpected to overtake that of the traditional SOAP-
based web services. A RESTful web service is a simple web service implemented using HTTP and the principles of
REST (Representational State Transfer) [1].The growing number of RESTful web services available on the web raises
the challenging issue of how to locate the desired web services.However, the existing keyword searching methods are
insufficient for the bad recall and the bad precision. Adding semantics to RESTful web services may help to overcome
these limitations.

Although there are several researches that add semantics to SOAP-based web services [2]-[5], the addition of
semantics to RESTful web services poses a greater challenge. Most RESTful web services do not require a description
language such as WSDL (Web Service Description Language), as the principal objective of REST is simplicity. The
lack of this description language makes it difficult to achieve the automated discovery and composition of the web
services. With RESTful web services gaining more popularity on the web, the interest in RESTful semantic web
services is growing.

We recently proposed an ontology learning method to build semantic ontologies automatically [6]. We extend the
ontology learning method to support thesemantic discovery and automatic composition of RESTful web services
(which are essential techniquesfor RESTfulsemantic web services). We first introduce the ontology learning method
and propose the semantic matching and composable resource discovery algorithms for RESTful web services. A
significant key issue is how to locate the desired web services. The efficient discovery can play a crucial role in
conducting the composition of web services.

The remainder of this paper is organized as follows. In Section 2, we begin by introducing the ontology learning
method.We present the semantic matching algorithmin Section 3 and the composable resource discovery algorithmin
Section 4.We describe our experimental evaluationin Section 5. Finally, we discuss related work in Section 6 and
conclude the work in Section 7.

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 1, Issue 9, November 2013

Copyright to IJIRCCE www.ijircce.com 2083

II. OVERVIEW OF ONTOLOGY LEARNING METHOD

The successful employment of semantic web services is dependent on the availability of highquality ontologies.

Building such ontologies is difficult and costly, thus hampering web services deployment. Our ontology learning
method [6] automatically generates ontologies from WADLs (Web Application Description Languages)[7] and their
underlying semantics.

A. PARAMETER CLUSTERING

We consider the syntactic information that resides in WADLs, and apply a mining algorithm to obtain their

underlying semantics. The key ingredient of this technique is to cluster parameter names in the collection of web
services into semantically meaningful concepts. We utilize the heuristic as the basis of our clustering, in that parameters
tend to express the same concept if they frequently occur together. This allows us to cluster parameters by exploiting
the conditional probability of their occurrences in the requests and responses of web service resources. Specifically, we
are interested in the association rules of the form R:t1⟹t2, where t1 and t2 are two terms. The problem of association
rules can be computed by using the well-known Apriorialgorithm.

The support is the probability that t1 and t2 occur in a request/response. The confidence is the probability that t2
occurs in a request or responses, given that t1 is known to occur in it. Ideally, parameter clustering results should have
the following two features: the cohesion of a concept (the connections between parameters inside the concept) should
be strong, and the correlation between concepts (the connections between parameters in different concepts) should be
weak. We say that t1 is closely associated to t2 if the confidence of the rule R:t1⟹t2 is greater than a threshold value δ
(i.e., conf(R:t1⟹t2)>δ).To measure the overall quality of a clustering, we define where coh and cor
are the average of all the cohesion and correlation values, respectively. Our goal is to obtain a high score that will
reflect tight connections inside the clusters but loose connections between clusters.

Our clustering algorithm is a refinement of a classical agglomerative hierarchical clustering. We sort the association
rules in descending order first by confidence and then by support. At each step, the algorithm selects the highest ranked
rule that has not been previously considered. If the terms in the rule belong to different clusters, the algorithm merges
the clusters. We then compute the score. There are two options: one is the score for the merged result in the
previous step, and the other is the score for a new result reflecting the merger of two similar clusters. We select the
option with a higher score. This process is repeated until eventually all result clusters satisfy the best score.

B. PATTERN ANALYSIS

Our pattern analysis technique captures the relationships between the terms contained in a parameter name, and

match parameters if both the terms are similar and the relationships are equivalent. This approach is derived from the
observation that people employ similar patterns when composing a parameter name out of multiple terms. In order to
characterize these patterns, all 8209 parameter names from 168 RESTful web services pulled off the Internet were
categorized into several buckets. As shown in Table 1, 2435(30%), 752(9%), 608(7%), 472(6%), and 368(5%)
parameters were defined as the noun phrases Noun1+Noun2, Adjective+Noun, Verb+Noun, Noun1+Noun2+Noun3, and
Noun1+Preposition+Noun2, respectively. There were 3574(43%) parameters not covered by any of the rules. The
majority of them (3548 parameters) contain only one token (e.g., city), the others (26 parameters) cannot be tokenized
according to the rules defined in Table 1.

Table 1: Pattern of multiple-words.

Rule Pattern Occurrence Example

1
2
3
4
5

Noun1+Noun2

Adjective+Noun

Verb+Noun

Noun1+Noun2+Noun3

Noun1+Preposition+Noun2

2435(30%)
752(9%)
608(7%)
472(6%)
368(5%)

companyID
highTemperature

updateList
telephoneAreaCode
passwordOfAccount

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 1, Issue 9, November 2013

Copyright to IJIRCCE www.ijircce.com 2084

The first step in this approach is to capture the relationships between the terms in a parameter and save them in the

ontology. From the above table, the rules in Table 2 are defined to transform the terms defined in the WADL file into
ontological concepts and relationships.

Table 2: Relationship between terms.

Rule Pattern Relationship Example

1
2
3
4
5

Noun1+Noun2

Adjective+Noun

Verb+Noun

Noun1+Noun2+Noun3

Noun1+Preposition+Noun2

Parameter propertyOfNoun1
Parameter subClassOfNoun
Parameter subClassOfNoun
Parameter propertyOfNoun1
Parameter propertyOfNoun2

companyIDpropertyOfcompany
highTemperaturesubClassOfTemperature
updateListsubClassOfList
telephoneAreaCodepropertyOftelephone
passwordOfAccountpropertyOfAccount

The ontology is generated from the set of parameters per the above rules. The next step is to match a query and the

ontology. By the definitions, two ontological concepts are matched if and only if one of the following is true:

 One concept is a property of the other concept(e.g.,companyIDpropertyOfcompany)
 One concept is a subclass of the other concept(e.g., highTemperaturesubClassOfTemperature)
 Concepts are synonyms of each other (e.g., state equivalent province)

Based on the above conditions, our method redefines which terms are actually connected to each other. For example,

Assume that cityName is to be compared against codeOfCity. The keyword search would not count these as a possible
match. However, if the city term had the relationships“XpropertyOfY” in its pattern rule, the matching logic will
return a matching score because these two parameters are closely related (perhaps using the rules
“cityNamepropertyOfcity” and “codeOfCitypropertyOfcity”). For details, readers may refer to our previous work [6].

III. SEMANTIC MATCHING ALGORITHM

In this section we describe how to predict the similarity of RESTful web service resources. Intuitively, we consider

resources to be similar if they take similar inputs and produce similar outputs, and if the relationships between the
inputs and outputs are similar. We identify a resource with a vector: resource = <description, request, response>. We
determine a similarity by combining the similarities of individual vector components. Here, we describe how to
compute the similarities for each of the components.

To compute the similarity of the description, we consider the tokenized resource path name and description as a bag
of words, and utilize the TF/IDF method [8]:

 ሺ ሻ ∑ √∑ ሺ ሻ ∑ ሺ ሻ

where (or) represents the weight of term in description D (or query Q). In order to compute the similarity of

the concepts represented by the request/response, we first find all clusters that include the term of the tokenized
request/response parameters. Algorithm 1 shows the process of finding cluster terms procedure. All terms in the
matched clusters are the relevant terms for each tokenized parameter. We replace each tokenized parameter with its
corresponding cluster, and then compute asimilarity score. The similarity score is defined to select the best matches for
the given request/response. Consider a pair of candidate matching requests/responses: ሺ ሻand (), where and denote parameters. The similarity between A and B is given by the following

formula:

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 1, Issue 9, November 2013

Copyright to IJIRCCE www.ijircce.com 2085

 ሺ ሻ ∑ ∑ ()

where, () { ()}for all

Algorithm 1: Finding cluster terms

1 clusterTerms = Ø
2 for eachCi in clusterSet
3 ifCi includes term then
4 for all terms in Ci
5 terms are added to clusterTerms
6 endfor
7 endif
8 endfor
9 return clusterTerms

We use a linear combination to combine the similarity of each component. Each type of similarity is assigned a
weight based on the user's confidence. The overall similarity is calculated by using Similardes,Similarreq, and Similarres:

 ሺ ሻ () ሺ ሻ

whereSimilardes,Similarreq, and Similarres are the description, request, and response similarity, respectively. These
components return a real value between 0 and 1, indicating the degree of similarity. The weights , , and are real
values between 0 and 1; they indicate the degree of confidence. High weight values indicate the user's confidence.
Please note that the sum of the weights does not have to add up to 1; in our experiments we use equal weights.

Our semantic matching algorithm based on the clustering technique can improve the recall performance of the
search engine by introducing semantically meaningful concepts. All matches whose similarity scores exceed 0 are
assigned to a candidate set. To select the best matches from the candidate set, however, an additional ontological
pruning step is required. Since theparameter clusteringtechnique of Section 2 considers all terms in a cluster as an
equivalent concept and ignores hierarchical relationships between the terms, matches might exist that are irrelevant to
the user's intention (i.e., false positives). Thus, the pruning process is necessary to improve the precision.

The basic idea to improve the precision of the semantic matching algorithm is to apply the pattern rules defined in
Table 2. A query is matched against all resources stored in the repository using pre-defined matching rules. Our
algorithm proceeds in a Greedy fashion. If two concepts are matched to the rules, the weight is set to 1. If two concepts
are not matched to the rules, then the weight is set to 0 and they are removed from the results. The core procedure for
the semantic matching algorithm is shown in Algorithm 2.

Algorithm 2:Semantic matching

1 for each resource S in repository
2 Compute Similardes=Sim(Qdes, Sdes)
3 for each term in query request/response
4 Get clusterTerms from Algorithm 1
5 Replace term with culsterTerms
6 endfor
7 Perform pruning process
8 Compute Similarreq and Similarres
9 Compute Similarity
10 endfor

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 1, Issue 9, November 2013

Copyright to IJIRCCE www.ijircce.com 2086

IV. COMPOSABLE RESOURCE DISCOVERY ALGORITHM

Given a query and a collection of RESTful web services stored in the repository, automatically finding a resource

from the repository that matches the query requirement is the resource discovery problem. For example, we are looking
for a resource to search a hotel. Table 3 shows the request/response parameters of a query and a resource. In this
example a service resourceS satisfy the query Q. Q requires hotelName as the response and S produces hotelName and
confirmNumber. The extra response produced can be ignored. S requires countryCode and nameOfCity as the request
and Q provides countryID, stateName, and cityName as the request. Aparameter can be matched with the other
parameter only if there is a semantic relationship between them. Here, although countryCode and countryID are
different forms, they have the same semantics since they are referred to the same concept. Also nameOfCity and
cityName have the same semantics since they are properties of the same object (i.e., city). Therefore, the agent is able
to infer that Q and Srequest parameters have semantically the same classes.

Table 3: Example of composableresource discovery.

Resource Request Parameters Response Parameters

Q
countryID
stateName
cityName

hotelName

S
countryCode
nameOfCity

hotelName
confirmNumber

We describe an algorithm, which issimilar to the one in [9],to support the composition of RESTful web services

using semantic descriptions. First, we can define the matching criteria as follows:

Definition 1: A resourceSmatches a queryQ when all the response parameters of Q are matched by the response
parameters of S, and all the request parameters of S are matched by the request parameters of Q.

Definition 1 guarantees that the resource found satisfies the needs of the query, and the query provides all the

request parameters that the resource needs to operate correctly. Our discovery algorithm is shown in Algorithm 3. This
algorithm adopts strategies that rapidly prune resources that are guaranteed not to match the query, thus improving the
efficiency of the system. A query is matched against all resources stored in the repository. Whenever a match between a
query and resources is found, it is recorded and sorted within the matches according to highest score. A match between
a query and a resource consists of matching all the response parameters of the query against the response parameters of
the resource; and all the request parameters of the resource against the request parameters of the query. If one of the
query's responses is not matched by any of the resource's response, the match fails. Matching between requests is
computed by the same process, but with the order of the query and resource reversed. The score of a match between
two requests/responses is calculated by the semantic matching algorithm.

Algorithm 3:Composableresource discovery

1 record = Ø
2 for each S in repository
3 if Matching(Q, S) then append S to record
4 endfor
5 sort(record)
6
7 Matching(Q, S){
8 SemanticMatch(Q.response, S.response)
9 SemanticMatch(S.request, Q.request)
10 }

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 1, Issue 9, November 2013

Copyright to IJIRCCE www.ijircce.com 2087

V. EXPERIMENTAL EVALUATION

A. EXPERIMENT ENVIRONMENT

In our experiments we compared our semantic matching and resource discovery algorithms based on the ontology

learning method with the traditional keyword searching method. Our objective is to show that we can achieve high
recall and high precision performance in finding similar resources, and to investigate the contribution of the two
novelalgorithms (i.e., semantic matching and composable resource discovery) of our method.To run our experiments,
we extracted a collection of RESTful web services from the ProgrammableWeb site [10]. The site currently has about
6,000 RESTful web services, and the total number of services is rapidly growing. We first collected the subset which
associated WADL files for three domains: weather, travel, and mapping. The ProgrammableWeb site allows us to
manually extract information regarding their functionality description, request, and response. This set contains 168
RESTful web services and 264 requests/responses. There are a total of 501 terms. During our experiments, while
manually evaluating the clustering results, we observed that a minimum support of 3% and a minimum confidence of
80% are reasonable threshold values.

We measured the overall performance using the recall (R), precision (P), and F-measure (F). The recall is a
measure of completeness, whereas the precision is a measure of exactness or fidelity. An inverse relationship exists
between recall and precision, in which it is possible to increase one only at the cost of reducing the other. Usually, the
recall and precision measures are not discussed in isolation. Rather, both are combined into a single measure, such as
the F-measure, which is the weighted harmonic mean of the recall and precision. The recall ሺ ሻ, where A
stands for the number of returned relevant operations, B stands for the number of missing relevant operations, and A+B
stands for the total number of relevant operations. The precision ሺ ሻ, where A stands for the number of
returned relevant operations, C stands for the number of returned irrelevant operations, and A+C stands for the total
number of returned operations. The F-measure ሺ ሻ.

B. RESULTS AND ANALYSIS

Figure1 presents the recall, precision, and F-measure values found via each method. Our experiments compared our

semantic matching algorithm based on the ontology learning method, which we refer to as ONTO, with WORD and CLST.
WORD and CLST denote the traditional keyword searching method and the ontology learning method without the
pattern analysis technique, respectively. The reason for testing the semantic matching algorithm with or without the
pattern analysis technique is to assess the impact of the ontological pruning process.

Figure1:The recall, precision, and F-measure values for different matching methods.

As shown in Figure1, our ONTO method beats all other methods. Its recall, precision, and F-measure are 80%, 35%,

and 49%, respectively, much higher than those of the WORD and CLST methods. The CLST method significantly

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

WORD CLST ONTO

Recall Precision F-measure

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 1, Issue 9, November 2013

Copyright to IJIRCCE www.ijircce.com 2088

improves recall performance; this yields a recall 28% higher than that of WORD, but only improves the precision
performance slightly. One major cause of this is that the clustering terms exert two-fold effects: On one hand, they
provide additional evidence, which significantly assists in the number of returned relevant resources.On the other hand,
they harbour noise that dilutes the high-quality evidence.

We conduct an additional experiment focusing on the performance of the pattern analysis technique. This
experiment considers the efficiency of the ontological pruning. The ONTO resultsare shown inFigure1. The precision
performance by the ontological pruning improves significantly; ONTOachieves a precision 15% higher than that of
CLST. The ontological pruning makes it possible to search only relevant resources to ensure high performance. In
conclusion, the ONTO method outperforms the WORD and CLST methods. Interestingly, CLST achieves a precision as
high as WORD, and a recall as high as ONTO.

We plot the recall-precision curves (R-P curves) in Figure2. In the R-P curves, the X-axis represents the recall, and
the Y-axis represents the precision. The curve closest to the upper right-hand corner of the graph indicates the best
performance. The R-P curves are regarded by the IR community as the most informative graph demonstrating the
efficacy of a search engine. From these curves, we can observe that ONTO and CLST methods exhibit better
performance than the WORD method. In particular, our ontology learning method (i.e., ONTO) exhibits the best
performance with its pattern analysis technique.

Figure2:The recall-precision curves for different matching methods.

We also present the recall and precision values of top-3, top-5, and top-10 returned results found from the

composable resource discovery algorithm. Figure3(a) illustrates the top-k recall comparison. To measure the recall, we
are interested in the number of returned relevant resources that can be returned within a given set of relevant operations.
We can see that both ONTO and CLST can achieve satisfying results. For top-3, top-5, and top-10 recalls, ONTO reaches
98%, 87%, and 77%, respectively, obviously higher than the other two methods. CLST is a little lower at the level of
top-3, top-5, and top-10, as it measures the similarity based on the underlying semantics. WORD has very low recall,
because it only matches the keywords from the user’s requests, and the results are coarse.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

Recall

WORD

CLST

ONTO

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 1, Issue 9, November 2013

Copyright to IJIRCCE www.ijircce.com 2089

(a) Top-k recall (b) Top-k precision

Figure3:The top-k recall and precision comparison for different resource discovery methods.

Figure3(b) presents the top-k precision comparison. As shown in this figure, ONTO beats the other two methods in

each result, since it filters the irrelevant concepts. For top-3, top-5, and top-10 returned results, ONTOprecision is 98%,
90%, and 77%, respectively. ONTO can improve the precision 22%, 27%, and 31%, respectively, rather than those of
WORD, 21%, 25%, and 27%, respectively, higher than those of CLST. The figure demonstrates that with the expected
number of returned results increasing, the rate of performance improvement increases. Therefore, the ONTO method is
superior to the WORD and CLST methods, because it can improve both recall and precision performance significantly.

VI. RELATED WORK

There are two approaches to semantic web services: semantically enabled web services and semantic web

technologies. The semantically enabled web services can be either SOAP-based or RESTful web services with
semantic wrappers that weave them into the semantic web. The semantic web technologies are not based on the mindset
of traditional web services. They acknowledge the fact that the semantic web is for machines, and build upon it

A. SEMANTICALLY ENABLED WEB SERVICES

1) SOAP-based Semantic Web Services

SAWSDL [2] derived from WSDL-S is a lightweight solution, and is only a W3C semantic web service
recommendation. It annotates WSDL components such as inputs/outputs with references to ontologies. There are more
ambitious W3C submissions for semantic web services, including OWL-S [3], WSMO [4], and SWSF [5]. OWL-S is
based on OWL, which describes the service in terms of profile, process, and grounding. WSMO is based on modeling
web services using the 4 major elements of ontologies, web services, goals, and mediators. SWSF is one of the latest
approaches to semantic web services and is built upon experience gained with OWL-S and WSMO. SOAP-based web
services do not fit well with REST principles; SOAP has one endpoint and many actions on that endpoint, whereas
REST provides an endpoint for each resource that will be acted upon.

2) RESTful Semantic Web Services

With RESTful web services gaining more popularity on the web, the interest in RESTful semantic web services is
growing. SA-REST [11] is similar to SAWSDL, as it semantically annotates RESTful web services. As there are no
WSDL files for RESTful web services, it adds the annotations to web pages that describe the services. The idea is to
use Microformats such as GRDDL and RDFa to embed the annotation in HTML files. Another approach was
introduced by Battle and Benson [12], wherein the Semantic Bridge for Web Services (SBWS) provides custom
annotations to the WADL documents, which are similar to SAWSDL. A Shortcoming of these approaches is that these
annotations are both difficult and costly.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TOP-3 TOP-5 TOP-10

WORD CLST ONTO

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TOP-3 TOP-5 TOP-10

WORD CLST ONTO

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 1, Issue 9, November 2013

Copyright to IJIRCCE www.ijircce.com 2090

B. SEMANTIC WEB TECHNOLOGIES

Another part of SBWS [12] involves providing a semantic REST concept. This mapped the commonly accepted

HTTP methods (GET, PUT, POST, and DELETE) into extended SPARQL commands (SELECT, INSERT, MODIFY,
and DELETE). The result provides the ability to retrieve, add, update, and remove RDF datasets directly from the
endpoints already in use in a RESTful web service. Morbidoni et al. [13] developed a Semantic Web Pipes (SWP) for
resolving RDF data and endpoints for SPARQL queries. Another approach that is based on semantic constructs is
Triple Space Computing (TSC) [14]. It is based on Tuple Space Computing. The communication is shifted from being
message oriented as in web services, to reading and writing RDF triples in a shared triple space. TSC has been used in
both web service coordination and communication. A main drawback of these approaches is that the construction of
RDF datasets is a relatively time-consuming task.

C. ONTOLOGY LEARNING METHODS

Currently, ontologies are developed manually through the collaboration of highly skilled domain experts and

ontology engineers. Ontology building is therefore a time-consuming and labour-intensive task whose automation is
desirable. A number of ontology learning methods have been proposed for the automatic acquisition of semantic
information.Hess and Kushmerick [15] employ Naive Bayes and SVM machine learning methods to classify WSDL
files in manually defined task hierarchies. Dong et al. [16] employ a clustering method that clusters parameters present
in inputs and outputs of operations into parameter concepts. But these clusters are not semantic ontology and just
simple a set of synonym words. Sabou et al. [17] propose an automatic extracting method that learns domain ontologies
from textual documentation attached to web services. The limitation of this method is that it is confined to human-
readable documentation, which is not common means of web service descriptions. Guo et al. [18] leverage relationships
between words in phrases to establish ontological relationships between acquired concepts. But the authors tackle only
a one-to-one mapping solution by aligning the generated ontology fragments, and taking advantage of active domain
experts.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a semantic matching algorithm and acomposasble resource discovery algorithm based on the

ontology learning method to improve the recall and precision performance of RESTful web services. These algorithms
can get optimal results by applying strategies that rapidly prune resources that are guaranteed not to match the
query.Theproposed algorithms are crucial features in the use of RESTful semantic web services.We implemented our
algorithms using the publicly available open tools (e.g.,CRFTagger, Apriori, and ClusterLib) and experimented on a
collection of RESTful web services. The experimental results demonstrate that our algorithms significantly improve the
recall and precision performance relative to the traditional keyword searching method. The results show that our
method achieves up to 30% improvement for recall performance, and up to 18% for precision performance compared to
the keyword searching method.

We are currently developinga system for automatically composingRESTful web services. More specifically, we are
working in the exciting area of semanticmashups. Our research will focus on specifying RESTful web services, finding
them, and integrating them to create mashups. Currentmashups require a human who has the domain knowledge and
can guide the overall composition process. The incorporation of our semantic matching and resource discovery
algorithms would result in further automation of the mashups. As components of future work, various optimization
techniques can be applied to the algorithms.

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 1, Issue 9, November 2013

Copyright to IJIRCCE www.ijircce.com 2091

ACKNOWLEDGMENT

This research was supported by Basic Science Research Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Education, Science, and Technology (No. 2010-0008303).

REFERENCES

[1] Fielding R.,“Architectural styles and the design of network-based software architectures”, PhD thesis, University of California, 2000.
[2] Kopecky J., Vitvar T., Bournez C., and Farrell J.,“SAWSDL: Semantic annotations for WSDL and XML schema”, IEEE Internet
Computing,Vol.11, No.6, pp.60-67,2007.
[3] OWL Services Coalition),“OWL-S: Semantic markup for web services”, OWL-S White Paper, 2004.
[4] Vitvar T., Zaremba M., Moran M., Zaremba M., and Fensel D.,“SESA: Emerging technology for service-centric environment”, IEEE
Software,Vol.24,No.6, pp.56-67,2007.
[5] http://www.w3.org/Submission/SWSF/.
[6] Lee Y.J. and Kim C.S.,“Building semantic ontologies for RESTfulweb services”, Proceedings of the 6th International Conference on Next
Generation Web Services Practices, pp.37-40,2010.
[7] Hadley M.,“Web application description language (WADL)”, http://www.w3c.org/Submission/wadl/.
[8] Salton G. and Buckley C.,“Term weighting approaches in automatic text retrieval”, Information Processing and Management,Vol.24, No.4,
pp.513-523,1988.
[9] Paolucci M., Kawamura T., Payne T., et al., “Semantic matching of web services capabilities”,Proceedings of the 1stInternational Semantic Web
Conference,pp.333-347, 2002.
[10] http://www.programmableweb.com/.
[11] Sheth A., Gomadam K., and Lathem J.,“SA-REST: Semantically interoperable and easier-to-use services and mashups”, IEEE Internet
Computing,Vol.11, No.6, pp.91-94,2007.
[12] Battle R. and Benson E.,“Bridging the semantic web and Web 2.0 with representational state transfer (REST)”, Journal of Web
Semantics,No.6,pp.61-69, 2008.
[13] Morbidoni C., Phuoc D., Polleres A., Samwald M., and Tummarello G.,“Previewing semantic web pipes”, Proceedings of the 5th European
Semantic Web Conference on the Semantic web: Research and Applications, pp.843-848,2008.
[14] Riemer J., Martin-Recuerda F., Ding Y., et al.,“Triple space computing: Adding semantics to space-based computing”, The Semantic Web –
ASWC 2006, Lecture Notes in Computer Science, 4185, pp.300-306,2006.
[15] Hess A. and Kushmerick N.,“Learning to attach metadata to web services”,Proceedings of the 2nd International Semantic Web Conference,
pp.258-273,2003.
[16] Dong X., Halevy A., Madhavan J., Nemes E., and Zhang J.,“Similarity search for web services”, Proceedings of the 30th VLDB conference,
pp.372-383,2004.
[17] Sabou M., Wroe C., Goble C., and Stuckenschmidt H.,“Learning domain ontologies for semantic web service descriptions”, Journal of Web
Semantics,Vol.3,No.4, pp.340-465,2005.
[18] Guo H., Ivan A., Akkiraju R., and Goodwin R.,“Learning ontologies to improve the quality of automatic web service matching”,Proceedings of
IEEE International Conference on Web Services, pp.118-125,2007.

BIOGRAPHY

Dr. Yongju Lee

Hereceived the Ph.D. degree in Information and Communication Engineering, KAIST (Korea
Advanced Institute of Science and Technology) in 1997, Korea. He is now a Professor in School of
Computer Information, Kyungpook National University, Sangju, Korea. He has published more than
60 papers in domestic and international conferences and journals. His current research interests
include web services, cloud computing, semantic web technology, and mobile applications. Dr. Lee
may be reached at yongju@knu.ac.kr.

