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ABSTRACT: In this paper an Image Denoising methods and its various parameters are studied. The probability 

density function of Denoising process is observed by using non-negative Lebesgue-integrable function, cumulative 

distribution functions and probability mass function are also observed. Edge process control is used for performing 

denoise signal and it was compared with EQ model. Edge parameter estimation and edge subtraction from the high 

frequency subband   data are analysed. 
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I. INTRODUCTION 

Image denoising has originated rehabilitated interest among both researchers and camera manufacturers. Faster 

secure speeds and higher density of image sensors (pixels) result in higher levels of noise in the captured image, which 

must then be processed by denoising algorithms to yield an image of acceptable quality. This is especially true when 

images are captured in unfavorable lighting conditions. The goal of such image denoising algorithms is to reduce noise 

artifacts, at the same time retaining details such as edges and texture in the image. 

A probability density function (pdf), or density of a continuous random variable, is a function that describes the 

relative likelihood for this random variable to take on a given value. The probability of the random variable falling 

within a particular range of values is given by the integral of this variable’s density over that range that is, it is given by 

the area under the density function but above the horizontal axis and between the lowest and greatest values of the 

range. The probability density function is nonnegative everywhere, and its integral over the entire space is equal to one. 

The bounds formulation in [1] showed that the denoising bound is a function of the corrupting noise characteristics 

(strength and density function) as well as the complexity of the underlying geometric structure of the image patches. 

Further, the bound is also a function of the amount of redundancy that exists among image patches. In computing the 

bounds for denoising, we estimated these factors from the underlying noise-free image. As a result, the bounds 

computation method in [1] cannot be directly applied to the case when only the noisy observation is available. 

 

II. IMAGE DENOISING 

As a result of different factors  during  acquisition  and  transmission,  an image might be degraded  by  noise leading  

to  a  significant reduction  of its  quality.  The artifacts  arising  due  to  imperfectness  of these  processes create  

obstacles  to the perception  of visual information  by an observer. Thus, for image quality improvement, efficient 

denoising technique should be applied to compensate such annoying effects. 

Existing models of image statistics are rooted in the television engineering of the 1950s[2], which relied on a 

characterization of the auto covariance function for purposes of optimal signal representation and transmission. This 

work, and nearly all work since, assumes that image statistics are spatially homogeneous (i.e., strict-sense stationary). 

Another common assumption in image modeling is that the statistics are invariant, when suitably normalized, to 

changes in spatial scale. The translation- and scale-invariance assumption, coupled with an assumption of Gaussianity, 

provides the baseline model found throughout the engineering literature: images are samples of a Gaussian random 

field, with variance falling as f −γ in the frequency domain. In the context of de- noising, if one assumes the noise is 

additive and independent of the signal, and is also a Gaussian sample, then the optimal estimator is linear. 
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A. Denoising Methods 

 

The efficient image denoising methods still is a valid challenge, at the crossing of functional analysis and statistics. 

In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level 

of applicability. All show an outstanding performance when the image model corresponds to the algorithm 

assumptions, but fail in general and create artifacts or remove image fine structures. The main focus of this paper is, 

first, to define a general mathematical and experimental methodology to compare and classify classical image 

denoising algorithms, second, to propose an algorithm (Non Local Means) addressing the preservation of structure in a 

digital image. The mathematical analysis is based on the analysis of the “method noise”, defined as the difference 

between a digital image and its denoised version. 

The  proper  sampling  space is again  formed based  on the  denoised  lowpass subband geometrical image prior 

information, using the proposed quantization based segmentation (except  for the subbands  from the fourth  

decomposition level). A complete  sampling  space dimensionality  |M |=15×15  was found to be optimal  from the 

output image PSNR point of view. To verify the performance of the developed algorithms,  we applied  them  to a set 

of twelve 8 bit 512×512 test images for 100, 225, 400, 625 noise variances of the AWGN. Due to the fact that  only 

two standard test images Lena and Barbara  are used for experimental  validation  of the most of existing Bayesian 

denoising algorithms, for the  fair comparison  purpose,  only results  for these images are presented in this paper and 

compared with the best Bayesian denoising techniques.  Due to the fact that  none of the candidates  is simultaneously  

the best for the case of two test images, the benchmarking  was performed using the average PSNR for these images for 

a particular noise variance  value (Table  1)[3]. The average PSNR results prove that  for the critically sampled 

transform  the performance of the proposed algorithm  is the best among known Bayesian techniques,  but for the case 

of the overcomplete domain the method proposed in [4] provides better  results. 

 
TABLE I 

COMPARISON OF AVERAGE PSNR [Db] FOR SEVERAL DENOISING METHODS AND BOTH TEST IMAGES [3] 
                      

                            

http://www.ijircce.com/


         

       ISSN(Online): 2320-9801 

       ISSN (Print):  2320-9798                                                                                                                                 
                                                                                                               

 

International Journal of Innovative Research in Computer  

and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 1, Issue 10, December 2013 
             

 

Copyright to IJIRCCE                                                                 www.ijircce.com                                                                            2445          

 

 

In  order  to  complete  experimental  validation  of the  developed  algorithms, denoising results  obtained  using 

these techniques  versus those one presented in [5] and [4] are given in Figure 1 for visual quality  comparison. 

 

                                                                 

 
Fig. 1.  Experimental results: (a) and (e) fragments  of original test  images; (b) and  (f ) the same fragments  corrupted by zero-mean AWGN; 

( c )  a n d  ( g )  DWT  domain  denoising results; (d) and (h) DOT  domain  denoising results.[3] 

 

 The  denoising performance, edge process model is necessary to take  into account local data  relationships  in the 

stochastic  image model. Since this could lead to an increase in computational complexity of the algorithm [3]. 

B. Probability Density Function 

A probability density function is most commonly associated with absolutely continuous univariate distributions. A 

random variable X has density fX, where fX is a non-negative Lebesgue-integrable function, if: 

 

 

Hence, if FX is the cumulative distribution function of X, then: 

 

       

and (if fX is continuous at x) 

 

 

Intuitively, one can think of fX(x) dx as being the probability of X falling within the infinitesimal interval [x, x + dx]. 

A random variable X with values in a measurable space (X,A) (usually R
n
 with the Borel sets as measurable subsets) 

has as probability distribution the measure X∗P on (X,A) : the density of X with respect to a reference measure μ on 

(X,A) is the Radon–Nikodym derivative: 
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That is, f is any measurable function with the property that: 

 

 

 

 

for any measurable set A ∑ A . 

    The terms "probability distribution functions" (Fig. 2) and "probability function" have also sometimes been used to 

denote the probability density function. However, this use is not standard among probability and statisticians. In other 

sources, "probability distribution function" may be used when the probability distribution is defined as a function over 

general sets of values, or it may refer to the cumulative distribution function, or it may be a probability mass function 

rather than the density. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

   

 

    Fig. 2.  Probability Distribution function. 

 

III. EDGE PROCESS CONTROL 

 

The  denoising performance, edge process control is necessary to take  into account local data  relationships  in the 

stochastic  image model. Since this could lead to an increase in computational complexity of the algorithm [3]. 

The  residual  correlation  of the  data  in the  high frequency  subbands  exists because no linear transform  is 

able to completely decorrelate  the edges of real images. This phenomenon is illustrated in Figure 10 where a 

simple example of step edge (Figure 3, a) is transformed  using non-decimated  wavelet trans- formation (Figure 

3,b). Therefore, if one finds a way to completely “remove” the  edges from the  subband  data,  this will allow an 

increase in performance by providing additional  decorrelation  (Figure  3,c). 

Our goal is to introduce  the edge process model (EP)  and to compare it with the  EQ  model. The  EQ  model 

belongs to  the  class of intraband stochastic image models and assumes that  the wavelet coefficients are Gaussian  (in 

the original paper  of Lopresto  et al. the  Generalized  Gaussian  [6]) distributed, with zero mean and variances that  

depend  on the coefficient location within each subband.  It is also assumed that  the variance is slowly varying. 
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Fig.3. Edge parameter estimation and  edge subtraction from the  high frequency subband   data:  (a)  original  data  representing a  test  

step  edge  in  the  coordinate domain;  (b) non-decimated transform of the edge data;  (c) subtracted edge data.[3] 

IV. CONCLUSION 

       In this paper we have analysed the theory of image denoising. Aiming at  enhancing  denoising performance  

without  increasing  algorithmic computational complexity, the edge process stochastic  image model was pro- 

posed  as  a  way  to  decrease  the  residual  correlation  in  the  high  frequency subbands. In this  case the  signifi- 

cant gain in the PSNR was obtained  for all tested AWGN variances. As it was mentioned,  the main open issue of 

the EP model is the reliable estimation  of the model parameters in the presence of noise. Therefore, we will 

concentrate on the  solution  to this  problem  in our ongoing research,  and  will exploit  it for other  applications  

such as image compression [7] and watermarking [8] where attacks  and watermark  are power limited due to 

perceptual  constraints on image fidelity. 
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