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ABSTRACT: In this paper we present two different architectures for modulo 2n+1 adders and by using this an 
efficient FFT computation is performed. One of the architecture is based on a sparse carry computation unit in which 
only some of the carries are computed. In this an inverted circular idempotency property of the parallel prefix carry 
operator is used and its efficiency is increased by a new prefix operator. The resulting adders will be having less area 
and power. The second architecture is derived by modifying modulo 2n-1 adders with minor hardware overhead. By 
using this adders we can implement FFT processor with improved performance.    
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I. INTRODUCTION 
 
Very Large Scale Integration (VLSI) has made a dramatic impact on the growth of integrated circuit technology. The 
positive improvements have resulted in significant performance/cost advantages in VLSI systems. As we know, to 
human decimal numbers are easy to comprehend and implement for performing arithmetic. Binary adders are one of 
the most essential logic elements within a digital system. Therefore, binary addition is essential that any improvement 
in binary addition can result in a performance boost for any computing system and, help improve the performance of 
the system. The major problem for binary addition is the carry chain. As the width of the input operand increases, the 
length of the carry chain increases. In this paper two architectures for modulo addition is designed and is verified using 
Xilinx. The main goal is to improve the performance of the system in terms of area ,speed, power etc. So that a 
modified FFT processor can also be designed using the above modified modulo adders. 
 
The concept  of the modulo 2n+ 1 adder is based on an inverted end around carry(IEAC) n- bit adder which is an adder 
that accepts two n-bit operands and provides a sum increased by one compared to their integer sum if their integer 
addition does not result in a carry output. Since the carry output depends on the carry input, a direct connection 
between them forms a combinational loop that may lead to an unwanted race condition .To avoid this Zimmermann 
[2],[3]  proposed IEAC adders that make use of a parallel-prefix carry computation unit along with an extra prefix 
level that handles the inverted end-around carry. 
 
In [4] it is explained that the recirculation of the inverted end around carry can be performed within the existing prefix 
levels, that is, in parallel with the carries’ computation. In this way, the need of the extra prefix level is canceled and 
parallel-prefix IEAC adders are derived that can operate fast with a logic depth of log 2 N prefix levels. Since this 
requires more area than [2],[3] a double parallel-prefix computation tree is required in several levels of the carry 
computation unit.Select-prefix  and circular carry select IEAC adders proposed in [5],[6] has less area but only less 
operating speed 
 
A fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier transform (DFT) and its inverse. 
Fourier analysis converts time (or space) to frequency and vice versa; an FFT rapidly computes such transformations 
by factorizing the DFT matrix . As a result, fast Fourier transforms are widely used for many applications in 
engineering, science, and mathematics. Here an efficient FFT algorithm is also implemented. 
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II.PARALLEL-PREFIX ADDERS 
                                                                             
    Generally parallel-prefix n-bit adder considered as a three stage circuit. They are pre-processing-stage, carry-
computation-unit and post-processing-stage.  Suppose that A =An-1  .An-2   . . ...A0 and B =Bn-1 .Bn-2   . . …..B0 represent 
the two numbers to be added and S =Sn-1 Sn-2 . . . S0 denotes their sum. The preprocessing stage computes the carry-
generate bits Gi, the carry-propagate bits Pi, and the half-sum bits Hi, for every i; 0 <= i <=n-1, according to  
 
 Gi =Ai .Bi : Pi = Ai +Bi : Hi =Ai xor Bi  

 
Where . , +, and xor  denote logical AND, OR, and exclusive OR, respectively. The second stage of the adder called the 
carry computation unit, computes the carry signals Ci, for 0 <=i <=n -1 using the carry generate and carry propagate 
bits Gi and Pi. The third stage computes the sum bits according to 

 
Si=Hi xor Ci-1 

  

 
 

Fig.1 Parallel prefix addition basics 
 
A. PRE PROCESSING STAGE 
 
The preprocessing stage computes the carry-generate bits Gi, the carry-propagate bits Pi, and the half-sum bits Hi, for 
every i; 0 <= i <=n-1, according to  
 
 Gi =Ai .Bi : Pi = Ai +Bi : Hi =Ai xor Bi  

 

 
Fig.2 Pre processing stage 

 
B. CARRY COMPUTATION UNIT 
 
The second stage of the adder, hereafter called the carry computation unit, computes the carry signals Ci, for    0<=i 
<=n -1 using the carry generate and carry propagate bits Gi and Pi. The third stage computes the sum bits according to 

Si=Hi xor Ci-1 
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 Carry computation is done by using an operator called parallel prefix operator i.e, ‘dot’ operator, which associates 
pairs of generate and propagate signals and was defined as  
 

(G,P)o(Gꞌ,Pꞌ)=(G+P.Gꞌ,P.Pꞌ) 
 
In a series of associations of consecutive generate/propagate pairs(G,P), the notation (Gk:J; Pk:J), with k > J, is used to 
denote the group generate/propagate term produced out of bits k; k -1; . . ; J 
 

 
 

Fig.3. Carry computation unit 
 
C. POST PROCESSING STAGE 
 
The third stage computes the sum bits according to 

 
Si=Hi xor Ci-1 

 
 

Fig.4 Post processing stage 
 
 Based on these concepts three types of parallel prefix adders are designed 
 

 
 

Fig.5 Examples of 8-bit parallel-prefix adders. (a) Kogge-Stone [7], (b) Ladner-Fischer [8] and (c) Knowles [9] family of adders. 
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III. MODULO 2N±1 ADDERS 
 
A.  Modulo 2n–1 adders 
 
The computation of modulo 2n- 1 addition is a conditional operation defined as 

 
(A+B) mod (2n-1) = {(A+B)                    ,  (A+B)<2n 

                                                                                      (A+B+1) mod (2n) ,  (A+B)≥2n   ………..(1)  

 

            A modulo 2n – 1 adder can be implemented using an integer adder that increments also its sum when the carry 
output is one, that is, when A + B ≥ 2n. the conditional increment can be implemented by an additional carry 
incremental stage as shown in figure 6. In this case, one extra level of  ‘•’ cells driven by the carry output of the adder, 
is required. 
             When A + B = 2n + 1, the adder may produce an all 1s output vector, in place of the expected result which is 
equal to zero. In most applications, this is acceptable as a second representation for zero. 

 
Fig .6. Parallel prefix modulo 28 -1 adder 

  
         The implementation of a modulo 2n – 1 adder requires the connection of the carry output Cn-1 = Gn-1:0 of an integer 
adder to its carry-input port. The carries of the modulo 2n – 1 adder Ci‾ = Gi:0 + Pi:0 . Cin.   Therefore, connecting the 
carry output to the carry input leads to Ci‾ = Gi:0 + Pi:0 . Gn-1:0.  This relation contains many redundant terms and 
according and simplified to 
 

Ci‾ = Gi:0 + Pi:0 . Gn-1:i+1 …(2) 
The simpler equation can be equivalently expressed using the ◦ operator as follows 
 

Ci‾ =(Gi, Pi) ◦ . . . (G0, P0) ◦ (Gn-1, Pn-1) ◦ . . . ◦(Gi+1, Pi+1) …….(3) 
 The above equation (3) that computes the modulo 2n – 1 carries has a cyclic form and, in contrast to integer 
addition, the number of generate and propagate pairs (Gi, Pi) that need to be associated for each carry is equal to n. This 
means that the parallel-prefix carry computation unit of a modulo 2n -1 adder has significantly increased area 
complexity than that of a corresponding integer adder. In terms of delay, the carries C- can be computed in log2 n levels 
using regular parallel-prefix structures using end around technique. At each level of the parallel-prefix structure, larger 
groups of (Gi, Pi)  are progressively associated and the carries C- are computed at the last level. The final sum bits Si‾ 
are equal to Hi xor Ci-1‾. 
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B. Modulo 2n+1 adders 
 
          There are two methods for finding modulo 2n +1 sum. First one is from simple modifications of the modulo 2n -
1 adders. The second one is by the sparse approach and the introduction of a new prefix operator. 
 
FIRST METHOD 

 
Fig .7. Parallel prefix modulo 28 +1 adders 

 
      Similar to modulo 2n-1 case,  the carry C i + at the ith bit position of an IEAC adder, when feeding the carry input 
Cin =C-1

+ with the inverted carry out Cn− 1തതതതതതതതത = Gn− 1: 0തതതതതതതതതതതത  can be computed more simply by 
C i + = Gi:0 + Pi:0 .. Gn− 1: ଓ + 1 തതതതതതതതതതതതതതതതതത 

 
Which can be expressed as 
 

Ci
+

 = (Gi, Pi) ◦ . . . (G0, P0) ◦ (Gn− 1, Pn− 1) o . . . o (Gଓ + 1, Pଓ+ 1)തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത 
 
where  (݃, and the final sum bits  are equal to  Hi xor Ci-1 ,(,തതത݃) തതതതത) is equal to

+ 

 

 
SECOND METHOD 
  
 In this section, we focus on the design of diminished-1 modulo adders with a sparse parallel-prefix carry 
computation stage [1] that can use the same carry-select blocks as the sparse integer adders. Diminished-1 modulo 2n 
+1 addition is more complex since special care is required when at least one of the input operands is zero. The sum of a 
diminished-1 modulo adder is derived according to the following cases: 
1. When none of the input operands is zero their number parts A* and B* are added modulo    2n+1. This operation can 
be handled by an IEAC adder. 
2. When one of the two inputs is zero the result is equal to the nonzero operand. 
3. When both operands are zero, the result is zero. 
According to the above, a true modulo addition in a diminished-1 adder is needed only in case 1, while in the other 
cases the sum is known in advance. When none of the input operands is zero number part of the diminished-1 sum is 
derived by the number parts A* and B* of the input operands as follows: 
 

S+= (A*+B*) mod (2n +1) = { (A*+B*+1) mod 2n   , A*+B* < 2n 

                                                                                           (A*+B*) mod  2n       , A*+B* ≥ 2n 
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Based on [1] different architectures for modulo 216+1adders are designed .According to the inverted circular idem 
potency property  

 
 

 (Gi:0, Pi:0) ◦ (Gn− 1: ଓ+ 1, Pn− 1: ଓ + 1)o(Gଓ: 0, Pଓ: 0)തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത 
                                       = (Gi:0, Pi:0) ◦ (Gn− 1: ଓ + 1, Pn− 1: ଓ+ 1)തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത          …..(4) 

With (ܩ,ܲതതതതതത) =  .(ܲ,ܩ̅)
Figure (8) shows  sparse-4 modulo 216+1 adders (a)using doubled up operators and (b) using the sparse approach which 
is enabled by the inverted circular idem potency property. In first case the computation can be performed within log 2 N 
logic levels. Here some prefix operators are doubled up, since two carry computations need to be performed in parallel; 
one on normal propagate and generate signals, while the other on their complements. The problem gets worse when the 
input operand’s width is not a power of two. Although the sparse version of the parallel-prefix adders has a lot of 
regularity and the area-overhead problem, as it can be verified , there is still a lot of space for improvement. 

     
Fig.8. Modulo 216 + 1 diminished-1 adders(a) existing and (b) using a sparse carry computation unit 

 
To avoid this problem a new prefix operator called gray operator is introduced. The gray operator  accepts five inputs 
and produces four outputs. Three of the inputs of a gray operator residing at prefix level j -1, namely, Gj-1 v, Pj-1 v and 
Tj-1 v form the operator’s vertical input bus, while the rest two Gj-1 

L and Pj-1 
L form its lateral input bus. The lateral bus 

signals are driven inverted to the operator. The gray operator produces three signals for its vertical successor of prefix 
level j (Gj V ; Pj V and Tj V ) and one (cj) for its lateral successor.  
Based on [1],it is clear that starting from a sparse architecture with doubled up operators, it suffices to 
1. remove the doubled up operators that associate inverted signals, 
2. replace the top operator of every column excluding the leftmost that accepts a feedback signal with a gray one. 
3. replace every vertical successor of a gray operator introduced by the previous step with a gray one. 
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Fig.9. Proposed [1] sparse-4 modulo 216 +1 diminished-1 adder 
 

 
Fig. 10.Design of a 4-bit Carry Select Block 

 
 

 
Fig. 11. Design of a gray operator 
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By using this proposed sparse-4 modulo Diminished-1 adder an efficient FFT algorithm is also implemented. A fast 
Fourier transform (FFT) is an algorithm to compute the discrete Fourier transform (DFT) and its inverse. Fourier 
analysis converts time (or space) to frequency and vice versa; an FFT rapidly computes such transformations 
by factorizing the DFT matrix into a product of sparse (mostly zero) factors.  

 
Fig .12. 8-point dft fft algorithm 

 
Let us consider the computation of the N = 2v point DFT. We split the N-point data sequence into two N/2-point data 
sequences f1(n) and f2(n), corresponding to the even-numbered and odd-numbered samples of x(n),that is, 

F1(n)=x(2n) 
F2(n)=x(2n+1),   n=0,1,…..N/2-1 

Now the N-point DFT can be expressed in terms of the DFT's of the decimated sequences as follows 
 

 
 
Hence the sequence X(k) will be obtained. Here we are considering the 8-point dft using the modified modulo 2n+1 
adder. The Inputs are given in parallel. The advantage of using this is power and area reduction. But the hardware 
requirement is high. So in order to reduce this pipelining concept is introduced in which the critical path is reduced by 
placing delay elements between the registers. It also helps to increase the speed. 
 

IV.  RESULT ANALYSIS 
 

The simulation is performed using XILINX in verilog HDL. The figure below shows the experimental results after the 
simulation.  
 

TABLE 1 
Experimental Results for Parallel Prefix Adders 

Performance parameters Koggestone adder Ladner-Fischer adder Knowles adder 
Delay(ns) 11.071 10.023 12.103 

Power(mw) 0.159 0.081 0.052 
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TABLE II 
Experimental Results for modulo 216+ 1 adders  

 
Performance parameters Modulo 216+1 adder  existing Sparse-4 Modulo 216+1 adder 

Delay(ns) 11.206 11.206 
Power(mw) 0.20 0.159 

 
A. RTL SCHEMATIC of 8-POINT FFT PROCESSOR 
Here 8 inputs  are given and correspondingly there will be 8 outputs also. Corresponding RTL schematic is  given 
below. 

 
 

Fig .13. RTL  schematic 
B. Output waveform 

 
Fig .14. output waveform 

 
 

V. CONCLUSION 
 
  In this paper, two modified power efficient  modulo 2n + 1 adders are presented. A novel architecture has been 
proposed that uses the inverted circular idem potency property of the parallel-prefix carry operator in modulo 2n+1 
addition and by introducing a new prefix operator that eliminates the need for a double computation tree in the earlier 
fastest proposals. The experimental results indicate that the proposed architecture heavily outperforms the earlier 
solutions .Also an efficient 8-point FFT is designed using the modified modulo adders which has performance 
advantages in terms of power and area. 
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