
ISSN: 2319-8753                                                                                                           

 

International Journal of Innovative Research in Science,                                      

Engineering and Technology 

(ISO 3297: 2007 Certified Organization) 

Vol. 2, Issue 8, August 2013 

Copyright to IJIRSET                                                              www.ijirset.com                                                                             4014 

 

ON UNIFORM CONTINUITY AND 

COMPACTNESS IN PSEUDO METRIC 

SPACES  

Dr. S.M.Padhye
1
 and  Ku. S.B. Tadam

2 

Associate Professor, Head of Dept. of Mathematics, Shri R.L.T. College of Science, Akola, Maharashtra, India
1
 

Assistant Professor, Department of Mathematics, Shri R.L.T. College of Science, Akola, Maharashtra, India
2
 

  

Abstract: The Pseudo-metric spaces which have the property that all continuous real valued functions are uniformly 

continuous have been studied. 

It is proved that the following three conditions on pseudo-metric space X are equivalent 

   a] Every continuous real valued function on X is uniformly continuous. 

   b] Every sequence {xn} in X with lim d(xn) = 0 has a convergent subsequence. 

   c] Set A is compact and for every 𝛿1 > 0, there is  𝛿2 > 0 such that d(x, A) > 𝛿1 implies  

        d(x) > 𝛿2 .     
 Here A = set of all limit points of X and d(x) = d(x, X- {x}) 

Further it is proved that in a pseudo-metric space X, a subset E of X is compact if and only if every continuous 

function f:E  →  R is uniformly continuous and for every 𝜖 > 0  

 the set {x 𝜖 E /  d(x) > 𝜖}  is finite. 
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I. INTRODUCTION 

Let X denote a pseudo-metric space with pseudo-metric d. For any x ∈ X and any subset D of X we shall denote by 

d(x, D), the distance from x to D, 

 ie. d(x, D) = inf{d(x,y)/ y ∈ D }. We shall denote by d(x), the distance from x to X-{x}. 

Recall that a point x∈X is called an accumulation point of a subset E of X if for every  

r > 0,there is y ∈E such that y ≠ x, d(x,y) < r. It follows that x is an accumulation point of E if and only if  d(x,E-

{x}) = 0. The set of all accumulation points of X will be denoted by  

A= { x 𝜖 X/ d(x) = 0 }. Since A = d
-1

{0} and d is continuous, A is closed. 

For any subset D of X, we have x ∈  𝐷   if and only if d(x, D) = 0. 
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II. INTERMEDIATE RESULT 

Theorem1: If every continuous function f: X → R is uniformly continuous then every sequence {xn} in X with lim 

d(xn) = 0 has a convergent subsequence . 

proof:  Suppose that every continuous function f: X → R is uniformly continuous but the condition is not satisfied. 

Thus there is a sequence {xn} in X with lim d(xn) = 0 having  no convergent subsequence. Then there is a sequence 

{yn} such that yn ≠ xn for all n and    𝑑( 𝑥𝑛 , 𝑦𝑛 𝑛→∞
𝑙𝑖𝑚 ) = 0. 

 We claim that {yn} does not have a convergent subsequence. If   {yn} had a subsequence {ynk } which is convergent 

then 𝑑( 𝑥𝑛𝑘 , 𝑦𝑛𝑘  𝑘→∞
𝑙𝑖𝑚 ) = 0.This would imply that   {xnk} also converges to the same limit to which {ynk} converges, 

which gives contradiction since {xn} does not have any convergent subsequence. 

Thus no point of {xn} and {yn} is repeated infinite times. 

Hence a subsequence of {xn} and {yn} can be extracted such that {xnk} = E and {ynk} = F are disjoint. As,{xnk}  and 

{ynk } have no convergent subsequences they have no limit points.    Thus the derived sets of E and F are empty. 

Thus E = { xnk}  and F = { Ynk} are disjoint closed subsets of X. 

  As each pseudo metric space is normal by Urysohn’s Lemma there is f: X → [0,1] which is continuous such that , 

f(E) = 0 and f(F) = 1.  As, f:X → R is a continuous function then by hypothesis f is uniformly continuous. Thus 

there is 𝛿>0 such that for all x, y 𝜖 X  d(x, y) < 𝛿 => d(f(x), f(y)) < 1.Since 𝑑( 𝑥𝑛𝑘 , 𝑦𝑛𝑘  𝑘→∞
𝑙𝑖𝑚 ) = 0. 

there  is K such that for k  ≥ 𝐾,  d(xnk ,ynk) <  𝛿 𝑎𝑛𝑑 𝑕𝑒𝑛𝑐𝑒      𝑓 𝑥𝑛𝑘  −  𝑓 𝑦𝑛𝑘     < 1  but 

  𝑓 𝑥𝑛𝑘  −  𝑓 𝑦𝑛𝑘    =  1 , a contradiction. 

     Hence, every sequence {xn} in X with lim d(xn) = 0  has convergent subsequence. 

 

Theorem 2: If every sequence {xn} in X with lim d{xn} = 0 has a convergent  subsequence then the set A is 

compact and for every 𝛿1> 0 there is 𝛿2> 0 such that d(x,A) > 𝛿1 => d(x) > 𝛿2 . 

Proof:  Firstly we show that the set A = {x : d(x) = 0}  is compact. ie. To show that every sequence in A has a 

convergent subsequence in A. 

Let {xn} be any sequence in A.Then {xn}  is a sequence in A⊂X with lim d(xn) = 0 and hence  by hypothesis  {xn}  

has a convergent subsequence say  {xnk} such that xnk →x 𝜖 X.  But d being continuous, d(x) = lim d(xnk) =0. 

Thus x  𝜖 A and  A is compact. 

Now we show that for every 𝛿1> 0 there is 𝛿2> 0  such that d(x,A) >𝛿1 => d(x) >  𝛿2 

Let  𝛿1> 0  be given and 𝛿′2 = inf {d(x) : d(x,A)> 𝛿1}.We claim that 𝛿′2≠0. If it is zero then for every n≥1 there is xn 

with d(xn,A) > 𝛿1  and d(xn) < 
1

𝑛
. ∴  d(xn)→0  as   n→∞ =>{xn}  has a convergent subsequence (by hypothesis) say 

xnk  → x As {xnk} is a subsequence of the sequence {xn} ,d(x) = 0 ∴ x  𝜖 A. ∴ 𝑑 𝑥𝑛𝑘 , 𝐴 ≤𝑘→∞
𝑙𝑖𝑚  𝑑 𝑥𝑛𝑘 , 𝑥 = 0𝑘→∞

𝑙𝑖𝑚   

i.e. 𝑑 𝑥𝑛𝑘 , 𝐴 𝑘→∞
𝑙𝑖𝑚  = 0 . This contradicts to d(xn, A) >𝛿1     ∀  n ≥ 1.Thus  Our assumption that  𝛿′2   = 0  is wrong  and 

hence   𝛿′2   > 0. Thus if d(x,A) >𝛿1 then d(x)≥ 𝛿′2 > 𝛿′2 /2 = 𝛿2.This proves the result.  

 

Theorem 3: If the set A is compact and for every   𝛿1> 0   there is    𝛿2> 0   such that   d(x, A) >𝛿1=> d(x) > 𝛿2  then  

every continuous function f :X → R   is uniformly continuous. 

Proof: Let f :X → R   be any continuous function. Then to show that f is uniformly continuous, suppose 𝜖 >

0 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛. For each point x 𝜖 A, there exists  𝛿𝑥> 0 such that d(x,y) <  𝛿𝑥 , y 𝜖 X => f (x) − f (y)   < 
𝜖

3
  ……. (1)  
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{ B(x,
𝛿𝑥

3
) : x 𝜖 A}  is the collection of open balls which covers A  and A is compact. ∴ there exist  points 

𝑥1, 𝑥2,…………,𝑥𝑛   in A  such that A ⊆ 𝐵(𝑥𝑖 ,
𝛿𝑥𝑖

3

𝑛
𝑖=1 ) . Let 𝛿1 = 

1

3
 inf. { 𝛿𝑥1

, 𝛿𝑥2
,---------𝛿𝑥𝑛

}. Choose 𝛿2> 0 

satisfying the given condition.Take, 𝛿 = min. { 𝛿2, 𝛿1}. 

 Now we prove that x, y 𝜖 X, d(x, y) <  𝛿 => I f(x) - f(y) I < 𝜖. Suppose, x,y 𝜖 X such that  d(x,y) < 𝛿.  

Now we consider two cases.  

Case I:   Let d(x, A) > 𝛿1. Then by hypothesis d(x) > 𝛿2  and d(x, y) < 𝛿  ≤  𝛿2< d(x). This is possible only if x = y, 

for if x ≠ y then d(x) ≤ d(x, y) < d (x) gives a contradiction. Thus x = y &  f (x) − f (y)   < 𝜖. 

Case II: Let d(x, A) ≤ 𝛿1. Consider a mapping h: A → R given by h(z) = d(x, z),   𝑧  𝜖 A 

Then h is continuous since d is continuous. Now, A is compact hence h(A) is compact. Since infimum is attained for 

h(A)  there exists z 𝜖 A such that inf. { h(z’)/z’ 𝜖 A } = h(z) = d(x, z).  ie. d(x,z)= d(x,A) ≤  𝛿1.  

Since A ⊆   𝐵(𝑥𝑖 ,
𝛿𝑥𝑖

3

𝑛
𝑖=1 ) , d(z, 𝑥𝑘 ) < 

𝛿𝑥𝑘

3
  for some  k ≤  n.  

Now   d(y, 𝑥𝑘 )  ≤  d(y, x) + d(x, z) + d(z, 𝑥𝑘 ) 

                          <  𝛿 + 𝛿1 + 
𝛿𝑥𝑘

3
  

                         <  𝛿1 + 𝛿1 + 
𝛿𝑥𝑘

3
  

                          <  
𝛿𝑥𝑘

3
 + 

𝛿𝑥𝑘

3
 + 

𝛿𝑥𝑘

3
                   

                                              (𝑠𝑖𝑛𝑐𝑒 𝛿1 < 
𝛿𝑥𝑘

3
) 

                           =   𝛿𝑥𝑘
 

This implies that |𝑓 (𝑦) − 𝑓 (𝑥𝑘) | < 
𝜖

3
   .  

Also, d(x, 𝑥𝑘 )  ≤  d(x, z) + d(z, 𝑥𝑘 ) 

                                                                                                     

                        <  𝛿1 + 
𝛿𝑥𝑘

3
                                                                                                         

 

                        <  
𝛿𝑥𝑘

3
 + 

𝛿𝑥𝑘

3
 

                                                                                                    

                        <   𝛿𝑥𝑘
 

Hence |𝑓 (𝑥) − 𝑓 (𝑥𝑘) | < 
𝜖

3
   . 

∴  f (x) − f (y)   ≤ |𝑓 (𝑥) − 𝑓 (𝑥𝑘) |   +     𝑓 (𝑦) − 𝑓 (𝑥𝑘)  

                             <  𝜖 3   +  𝜖 3   =  
2𝜖

3
  <   𝜖 

This proves that f is uniformly continuous.  
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III. MAIN RESULT 

Theorem 4: On Pseudo metric space X following conditions are equivalent. 

    a] Every continuous real valued function on X is uniformly continuous. 

   b] Every sequence {xn} in X with lim d(xn) = 0 has a convergent subsequence. 

   c] Set A is compact and for every 𝛿1 > 0, there is  𝛿2 > 0 such that d(x, A) > 𝛿1 implies  

        d(x) > 𝛿2 .  

Proof: 

                            [a] => [b] follows from theorem 1. 

                            [b] => [c] follows from theorem 2. 

                            [c] => [a] follows from theorem 3. 

 

Theorem 5: E  is compact iff every continuous function f:E  →  R is uniformly continuous, and for every 𝜖 > 0, the 

set {  x 𝜖 E /  d(x) > 𝜖 }  is finite. 

Proof: Let  E be compact.  Since on a compact space every continuous real valued function is uniformly continuous, 

first condition is satisfied. Now to show that the set {  x 𝜖 E /  d(x) > 𝜖 }   is finite, for every 𝜖 > 0. Suppose for some  

𝜖 > 0 , the set   {  x 𝜖 E /  d(x) > 𝜖 }    is infinite. We know that { B(x,𝜖) : x 𝜖 E } is  a family of open spheres 

covering E. Then by compactness of E , this open cover has a finite subcover say { B(xi, 𝜖 ) / i= 1,…..n}  for E . 

Now we show that {x 𝜖 E / d(x) > 𝜖  }  ⊂{ 𝑥1, 𝑥2,……𝑥𝑛}. 

Let y ∈ {  x 𝜖 E /  d(x) > 𝜖 }  Then   d(y, xi) ≥  inf. { d(y,x) / x ∈ X – {y}} = d(y) > ∈  for all i = 1,2……n. 

ie. y ∉ B(xi, 𝜖 ) for all i= 1,…..n. But E =  B(xi, 𝜖 )𝑛
𝑖=1 , which gives a contradiction. 

 This proves that the set {  x 𝜖 E /  d(x) > 𝜖 }  is finite. 

Conversely:  

Suppose that both the conditions are satisfied. For compactness of E let {𝑥𝑛} be any sequence in E.We show that 

{𝑥𝑛} has a convergent subsequence in E. If {𝑥𝑛} is finite, there is at least one point in {𝑥𝑛} which is repeated 

infinite times. This gives a constant subsequence of {𝑥𝑛} which converges. 

If {𝑥𝑛} is infinite, then going to a subsequence if required we may assume that {𝑥𝑛} contains all distinct elements. 

We now show that lim𝑛→∞ 𝑑(𝑥𝑛) = 0 . 

If lim𝑛→∞ 𝑑(𝑥𝑛) ≠ 0 , then there is 𝜖 > 0 such that for all N ≥ 1 there is n > N with d(xn) ≥ 𝜖.For N=1, there is n1 > 

1 such that d(𝑥𝑛1
) ≥ 𝜖. Choose n2 > n1 such that  

d(𝑥𝑛2
) ≥ 𝜖. Continuing this procedure we get a subsequence { 𝑥𝑛𝑘  } of {𝑥𝑛} such that d(𝑥𝑛𝑘

) ≥ 𝜖 for all k ≥1. But 

by hypothesis {  x 𝜖 E /  d(x) > 
𝜖

2
}  is finite . This means that { 𝑥𝑛𝑘  } is finite which is a contradiction as all xn’s are 

distinct.  

Thus lim𝑛→∞ 𝑑(𝑥𝑛 ) = 0 and by applying theorem 1, we can conclude that {xn} has a convergent subsequence. This 

completes the proof. 
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