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ABSTRACT-MapReduce is a software framework that allows certain kinds of parallelizable or distributable problems 
involving large data sets to be solved using computing clusters. This paper introduces our experience of grouping internet 
users by mining a huge volume of web access log of up to 500 gigabytes. The application is realized using hierarchical 
clustering algorithms with Map-Reduce, a parallel processing framework over clusters. However, the immediate 
implementation of the algorithms suffers from efficiency problem for both inadequate memory and higher execution time. 
This paper presents an efficient hierarchical clustering method of mining large datasets with Map-Reduce. The method 
includes two optimization techniques: Batch Updating to reduce the computational time and communication costs among 
cluster nodes, and Co-occurrence based feature selection to decrease the dimension of feature vectors and eliminate noise 
features. 
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I. INTRODUCTION 

MapReduce is the most popular cloud computing programming model nowadays. It provides programmers with powerful 
APIs by encapsulating the details of parallelism, fault tolerance and load balancing. So programmers with no parallel 
programming experience can write efficient parallel programs based on the model. Typical MapReduce programs run on 
large clusters. But the reality is most organizations can’t afford to build a large cluster. So building a small cluster to 
improve the efficiency of time-consuming applications is an economical and efficient solution. Non-data-intensive 
applications are common, which have small input data sets. But it takes long time to process the data sets, even a single 
record in it. Internet services such as e-commerce sites generate a large volume of web logs every day. The logs from 
millions of users provide a potential golden mine for understanding user access pattern and promoting new service value. 
But the large datasets also pose new challenges for data mining algorithms to efficiently process within given constraints 
such as memory and execution time. To overcome the constraints, data mining algorithms can be implemented with Map-
Reduce[1], which breaks the large datasets into small chunks and process them in parallel on multiple cluster nodes and 
scales easily to mine hundreds of terabytes data[2] by adding inexpensive commodity computers. This paper explores the 
efficiency implementation of hierarchical clustering [3] with Map-Reduce, in the context of grouping Internet users based 
on web logs. In the application, the Internet users are grouped based on the keywords in title and meta information of web 
pages that users have accessed to. As a general framework, Map-Reduce provide good scalability but ignores the efficiency 
optimization of data mining algorithms. As a consequence, it takes nearly 80 hours to finish the mining job for the web 
logs of 1.2 terabytes involving nearly 1,000,000 users and 100,000 keywords. In contrast, the proposed improved 
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hierarchical clustering method can accomplished the same task in nearly 6 hours Hierarchical clustering for large datasets 
consists of a large number of successive iterations of clustering processes, in which feature matrix merging and updating, 
similarity value modification are common operations. The matrix updating and similarity value modification invoke file 
operations of distributed file system and constant IO operations, which incur high IO and distributed node communication 
overhead. In addition, the large dimension of feature vectors demands high memory usages and causes heavy memory 
paging penalty. 

In this paper, we present an efficient hierarchical clustering method for large datasets with Map-Reduce. We propose 
two optimization techniques to address the efficiency issues, which are believed to be applicable to other data mining 
algorithms implemented with Map-Reduce. We propose a Co-occurrence based feature selection technique at the pre-
processing stage that takes the co-occurrence frequency as a contribution to the element value of feature vectors and 
makes, for each user, top N keywords with highest value as the selected features. Experiment shows the feature selection 
reduces the dimension of feature vectors to 49%, but with better accuracy of similarity values for user groups. 

 

 
 

Fig.1 Phases of grouping Internet users based on Web access logs 
 
 

We approach Batch Updating to reduce the IO overhead and distributed communication cost during the clustering. The 
technique batches as many IO and communications operations as possible in one iteration, while assures the correctness of 
hierarchical clustering. We propose the in-memory batch updating principle that treats the top N pairs of user groups with 
highest similarity values in three different ways. The empirical study shows Batch Updating reduces the number of 
updating iterations to 6.01%, the clustering is accomplished in 7.45% of the original execution time. 
 

 
II. CO-OCCURRENCE BASED FEATURE SELECTION 

One method to improve efficiency of the hierarchical clustering is to reduce the dimension of user-keyword matrix. In 
this paper we propose co-occurrence based feature selection, motivated by the observations as follows. Firstly, the list of 
keywords extracted from the title and the keyword meta information are not equally important in weight and even some of 
them are noisy keywords. Secondly, the summary of a web page can be described by several keywords that are 
semantically related. For example, a page with title ”Apple iMac The all-in-one desktop for your photos, movie and 
music” can be summarized with the subset of keywords ”Apple iMac photos movie music”. Thirdly, semantically related 
keywords are more representative for the web page topic than other keywords. For instance in last example, ”apple”, 
semantically related to ”iMac”, is more representative than ”desktop”, though they both appear in the title. Co-occurrence 
based feature selection reduces the dimension of feature vectors by summarizing a user’s interested topics with the most 
representative keywords. For any two keywords, their co-occurrence frequency are calculated to reflect the relationship in 
semantics between keywords, and higher element value dmj (also called attention degree) of feature vectors is given to 
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more related keywords than the others. Essentially the  element value dmj consists of the contributions of both the number 
of keyword occurrences and the co-occurrence frequency of the pairs of keywords. The whole procedure of feature 
selection is performed in 5 phases, and is realized with 17 Map-Reduce tasks. The reduced user-keyword matrix is reused 
in a large number of clustering iterations, making the overhead of co-occurrence based feature selection amortized. 
A. Calculation of Attention degree for keywords 

Phase 1: the calculation of attention degree starts with counting the keywords and the pairs of keywords in title and 
the keyword meta information of web pages a user has visited. For every page title, this phase outputs Result1 and 
Result2 in following format: 

R1 :< userm; keywordi; ni > 
R2 :< userm; keywordi; keywordj ; nij > 

R1 describes that keyword appears n times in the page accessed by userm; R2 describes that the pair keywordi and 
keywordj ) co-occurs nij times visited by userm.From the keyword meta information, the result set Result3 in format R3 are 
yield , describing that pair (keywordi and keywordj ) appeared nm ij times in meta information of urls. 

R3 :< urls; keywordi; keywordj ; nm
ij > 

Our mining application pre-processes the raw data and outputs a matrix of near 1,000,000 users and 100,000 keywords. 
The large datasets take a long time to pre process, and operations on the generated matrix cannot be loaded into memory 
for efficient processing, and results in high IO and distributed communication overhead. 
B. Feature selection 

Feature selection and builds the reduced user-keyword matrix of low-dimension feature vector. Given the feature 
vector for a Internet user, we reduce the dimension by only keeping the top N attention degrees that are most 
representative for the users’ interested topics. 
The final feature vectors are calculated in the following Steps: (1) Select the representative keywords for users. For each 
user, the accessed keywords are ranked in descending order of the final attention degrees, and the top N keywords are 
selected as representations of the user’s interests. (2) Union the all users’ representative keywords to form the final list of 
the selected features. (3) Obtain the feature vectors for the users based on the final list of selected features. Using result set 
Result as input, the element for keywords not in selected features are removed, and the userm’s attention degree dmi for 
keywordi in the selected features is set to the final attention degree dmi. If the dimension of the feature vector with selected 
features is m, and the number of users is n, the user-keyword matrix is given in formula (4), where each row is a feature 
vector for a user and the element value is the attention degree of the user for a keyword.co-occurrence based feature 
selection reduces the dimension of feature vectors to nearly a half, but with better accuracy of similarity values for user 
groups. 

III. MAPREDUCE PROGRAMMING MODEL 
The key of MapReduce programming model is map phrase and reduce phrase. Original input data is mapped into 

intermediate key/value pairs by many parallel map operations at map phrase. Many reduce operations are executed in-
parallel to produce the final results[4]. Map operation, which is written by users, takes original input data split as input 
and produces a group of intermediate key/value pairs. MapReduce framework collects these pairs, groups them by keys 
and passes them to reduce operation. Reduce operation, which is also written by users, takes the output of map phrase as 
input, merges these key/value pairs by key and produces final results. Usually each reduce operation produces a result. 
 

IV.SOURCE OF DATA 
We perform all experiments on 24 cluster nodes, which are Dell Power Edge 2950 servers with two dual-core 

processors (Intel Xeon 2.66GHz), 8GB RAM, and installed with Linux RHEL4. The nodes are connected by Gigabit 
Ethernet cable. The large datasets are the 1.2 TB web logs collected in six months, which contains more than 1,000,900 
users, and the accessed keywords number 108,489.Therefore, the first two dimensions of the data are informative features 
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that reveal the clustering structure, as shown in Fig.2, while the other features are random noises artificially added to test 
algorithm robustness. 
 

 
Fig.2 Example of the synthetic data used in our experimental study. 

 
 

V. METHODOLOGY 
Generally, the hierarchical clustering consists of a large number of successive clustering iterations. Every iteration 

begins with calculating the similarity of every pair of user groups (or users) and finding out the most similar user groups, 
then merges them and updates the feature vectors in user-keyword matrix file. The direct parallelization of hierarchical 
clustering has the problem of causing poor performance: a large number of successive clustering iterations will incur high 
IO and distributed communication overhead due to the read/write operations both on disks and distributed file system, 
caused by both matrix updating and similarity value modification. 
 

 
 

Fig.3 Hierarchical Clustering with Batch Updating 
 

This section details Batch Updating that is proposed to improve efficiency of hierarchical clustering for large datasets. The 
idea behind is to combine several iterations of clustering into one so that the updating matrix file and modifying similarity 
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values are processed in batch mode, resulting in a shorter response time for the mining application. Fig.3 illustrates three 
major phases of the hierarchical clustering with Batch Updating. Phase 1 batch chooses the top N pairs of user groups for 
the iteration of clustering, Phase 2 performs in-memory batch updating on the chosen user groups as many as possible; 
Phase 3 updates the user keyword matrix file and similarity values, both being stored in distributed file system.  
A. Data structures 

The improved hierarchical clustering methods use two new data structures for efficient clustering. 
(1) C-queue: a queue that stores top N pairs of user groups with highest similarity values. The element in the queue is Cij , 
which denotes the pair contains user groups ui and uj. All elements in C-queue are sorted in descending order. Without 
loss of generality, we make the following assumption for the element Cij : (i¡j). 
(2) Batch-queue: a queue that stores Cij (i¡j) to be batch processed in one iteration. In fact, the pairs in C-queue are 
processed in queue order one by one and are inserted into Batch-queue if necessary. Therefore, elements in Batch queue 
are also sorted in order. 
B. In-memory batch updating Principle 

The principle behind in-memory batch updating is to batch process as many iterations of user group clustering as 
possible, so long as no wrong clustered user groups are generated. To guarantee the correctness of the clustering, an 
element in C-queue is processed in three different ways: 
(a) Insert the element into Batch-queue; or (b) ignore the element by Batch-queue; or (c) end the iteration of batch 
updating by merging and updating of the pairs in Batch queue. Assume Batch-queue contains m elements, three different 
ways of processing the element Cij in C-queue and the rationale behind are described as follows. 
Insert Cij into Batch-queue. The process takes place when no elements exist in Batch-queue that have user groups equal to 
the user group ui or uj that Cij denotes, as formally defined as follows: 
 

 
 
The reason for this is that, the processing including user keyword matrix and similarity value updating for the elements in 
Batch-queue has no side-effects on the processing of the element Cij . As a result, the element is directly inserted into 
Batch-queue. 
 
(b) Ignoring Cij . As long as there exists an element Cpq in Batch-queue that uq is the same as one of the user groups 
denoting by Cij , Cij can be removed from C-queue and ignored by Batch-queue. The condition is formally given by 
formula. 
 

 
 
Hierarchical clustering contains the process of merging user groups, which means, after processing the element Cpq (p<q), 
the user groups up and uq are merged. In our merge strategy, we only keep the user group up and replace its feature vector 
with updated element values using , and the user group uq disappears. As the element Cij meets , we just remove it from 
C-queue and start processing the next element. 
 
(c) Merge and update the pairs in Batch-queue. It is taken when there exists an element Cpq in Batch-queue that the user 
group up is same as ui or uj . Formally the condition is given as follows: 
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The reason is that, Cij is at the head of C-queue in advance. If we update the feature vector of user and modify the 
similarity values, the similarity values of the element Cij and other elements in C-queue may be changed as well as the 
order of elements in C-queue, which means Cij is probably not at the head of C-queue. Therefore, we need to batch merge 
the clusters, update user-keyword matrix and modify similarity values by the elements in Batch-queue, then start a new 
batch updating, based on the up-to-date similarity values. 

5.1 MAPREDUCE 

A MapReduce program is composed of a Map() procedure that performs filtering and sorting (such as sorting students 
by first name into queues, one queue for each name) and a Reduce() procedure that performs a summary operation (such 
as counting the number of students in each queue, yielding name frequencies). The "MapReduce System" (also called 
"infrastructure", "framework") orchestrates by marshalling the distributed servers, running the various tasks in 
Hierarchical, managing all communications and data transfers between the various parts of the system, providing for 
redundancy and fault tolerance, and overall management of the whole process. 'MapReduce' is a framework for processing 
problems across huge datasets using a large number of computers (nodes), collectively referred to as a cluster (if all nodes 
are on the same local network and use similar hardware) or a grid (if the nodes are shared across geographically and 
administratively distributed systems, and use more heterogeneous hardware). MapReduce can take advantage of locality of 
data, processing data on or near the storage assets to decrease transmission of data. 

 

 
 

Fig.4 Hierarchical Cluster Architecture Diagram 
 

A.Row Cluster Re-assignment 
Map function. The input to the Map function is a (tuple id,entry tuple) pair. The Map function computes the distance 

of the entry Zij from each of the k possible row clusters that row i could be assigned to. The row id and an entry distance 
tuple (consisting of the matrix entry tuple augmented with the vector of k distances) are output as the intermediate key 
and value, respectively. Reduce function. The input to the Reduce function is a row id and the list of values (entry-distance 
tuples) for the entries in the corresponding row. The Reduce function simply sums up the distances of the individual row 
elements to find the total distance of the row from k possible row clusters. The row is then assigned to the row cluster with 
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the minimum distance. The entry tuples are updated with the new row cluster assignment and pairs of tuple ids and entry 
tuples (without distance vectors) are output. 
 
 
B. Implementation with Map-Reduce 

Our hierarchical clustering using 3 Map-Reduce tasks for batch choosing pairs of user groups (phase 1), updating the 
user-keyword matrix file (phase3) and modifying the similarity value file (phase 3) Respectively. The in-memory batch 
updating (phase 2) involves processing elements in C-queue as well as filling them into Batch-Queue, both of which are 
directly performed at the master node. 

 
Table .1  

Feature Selection For The Given Large Datasets 
 

 # of keywords 
With feature selection 53,049 
Without feature 
selection 

108,489 

C. Feature selection evaluation 
Co-occurrence based feature selection uses a subset of keywords as features to reduce the dimensions of both feature 

vectors and user-keyword matrix. We build the user keyword matrix with and without feature selection. Table.1 lists the 
changes of keyword numbers, where N=100 top keywords are selected for each user. The dimension of the matrix and the 
feature vectors is reduced to 49%, from 108,489 to 53,049. As most feature vectors are sparse, memory requirement is 
decreased and similarity calculation is more efficient. Feature selection changes the attention degrees of the keywords 
accessed  by users. We measure the changes of top N keywords for the users using metrics given as (10) and (11), which 
measures the changes of top interested keywords for a single user ui and the global average changes for all the users 
respectively. 

Where Mij is an indicator variable for the changes. Mij=1,if keyword , one of the user Ui selected features, is not one 
of the original top N keywords without feature selection, otherwise Mij=0. Figure 3 shows the average change ratio with 
the different choice of parameter N. The change ratio of top keywords decrease as number of selected keywords for each 
user grows. We choose N=100 for feature selection 
as it results in low average change percentage (0.92%). 

 
Fig.5 Percentage of Change of Top N Keywords 
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Fig.6 Comparison of similarity values with and without feature Selection 
 

D.Batch Updating evaluation 
 We first evaluate the efficiency of hierarchical clustering with Batch Updating under different size N of C-queue. The 

size N affects how many pairs of user groups are batch choose and results in changing the total execution time. Table 
2.shows the numbers of iterations and the total execution times with the different N, which implies the iteration numbers 
are approximately equal(they are affected by the condition that some critical values are equal) and the bigger N does not  
necessarily mean more efficient clustering. 

Table 2. 
 Iterations Of Batch Updating 

 
N # of iteration Execution time(seconds) 

500 1678 46962 
100 1680 28603 
50 1680 21412 
10 1684 26615 

 
Table 3.  

Updates And Execution Times Of hierarchical Clustering 
 

 # of iteration Execution 
time(seconds) 

With BU 1680 21412 
Without BU 27939 287258 

 
 

Then we evaluate the efficiency improvement of hierarchical clustering with Batch Updating. We choose the size of C-
queue as N=50, and Table.3 shows the comparison results of hierarchical clustering for the large datasets. The results 
show that Batch Updating decreases the total execution time of our mining application to 7.45%. The major efficiency 
contribution is the reduced IO operations and communication costs, incurred by the only 6.02% iterations of hierarchical 
clustering with Batch Updating. 
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VI. RELATED WORK 

Hierarchical clustering, has become increasingly popular in recent years as an effective strategy for tackling large 
scale data clustering problems. There are Hierarchical k-means [7] Parallel clustering [8], Hierarchical MST [9], 
Hierarchical mean-shift [10], and Hierarchical DBSCAN [11], to name a few.  
In terms of the Hierarchical programming framework used for Hierarchical clustering, a majority of Hierarchical 
clustering algorithms have been implemented using MPI, a message passing interface specification for Hierarchical 
programming [5]. More recently MapReduce [7], a Google Hierarchical computing framework and its Java version 
Hadoop have been increasingly used. For example, Hadoop k-means [8],and MapReduce hierarchical clustering. 
Hierarchical implementation of spectral clustering is most related to our study in this paper since power iterative 
clustering described in this paper is related to spectral clustering. In their work they started with approximating the dense 
similarity matrix by sparsifying it. They then used MapReduce as the Hierarchical computing framework to construct the 
sparse similarity matrix using t-nearest neighbours. For eigen decomposition, they used a Hierarchical eigen solver 
package called PARPACK, a Hierarchical ARPACK implementation based on MPI. Our work is on the Hierarchical 
implementation of power iteration clustering.  

VII. CONCLUSION AND FUTURE DIRECTIONS 
This paper explores the efficient implementation of hierarchical clustering algorithms with Map-Reduce, in the 

context of grouping Internet users based on web logs. To reduce the memory requirement for the large size of features, 
Co-occurrence based feature selection technique is proposed. We also proposed a new fully distributed architecture to 
implement the MapReduce programming model. Nodes pull for job assignments and global status in order to determine 
their individual actions. The architecture also uses queues to shuffle results from Map to Reduce. Even though a full scale 
performance evaluation is beyond the scope of this paper, our preliminary results indicate the is a practical system and its 
performance is on par with that of Hadoop. Our experimental results also indicate that using queues to overlap the map 
and shuffling stage seems to be a promising approach to improve MapReduce performance. To lower the IO and 
distributed communication overhead, we propose Batch Updating to combine as many user groups merging and updating 
as possible in one update iteration. For the future work, we plan to further investigate miscellaneous variations of 
sequential pattern mining on hybrid cloud environment. 
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