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ABSTRACT 

Adaptive immunotherapy or vaccines has been tried as a therapeutic 

option against cancer in the past decade. It is necessary for patients in 

advanced stage malignancy to have an efficient treatment. By taking in 

consideration that cancer vaccines are presenting effective results 

primarily in prophylactic settings, it is significant to develop therapeutic 

vaccines against cancer. On the contrary to the infectious diseases, 

cancers ascends from own body cells, to which immune system gets 

tolerized. Hence, to develop active immune response against cancer is 

more challenging compared to the infectious diseases. 

MODES OF CANCER TREATMENT 

Cancer can be defined as uncontrolled cell proliferation where non- characterized cells have ability to 

colonies in adjacent body parts [1-8]. Cancer which originates in breast tissue or other related part is called as breast 

cancer [8-19]. It is the most common type of cancer found in India and according to recent statistics, breast cancer 

accounts for 27% of overall cancers in women in India. As per the data, there are 1, 44,937 cases register of breast 

cancer and 70,218 deaths were reported. Hence, by following these numbers we can state that success rate of 

cancer treatment is very poor [20-32]. 

Current cancer treatment includes mainly three aspects: Surgery–where the specific cancer causing tissue 

or tumor is removed, Chemotherapy–where different drugs are given to reduce the tumor growth and 

Radiotherapy–where radiation is used to control metastatic tumor [33-41]. Even though these treatments are being 

used widely, there is necessity of new treatment methods due to high mortality rate. The following Figure shows 

increase in breast cancer cases in India in 2015 compared to last 25 years [42-51]. 

Figure 1. Comparison of breast cancers in India presently and before 25 years. 
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The modern approach in cancer treatment includes many different methods where cancer vaccines, use of m-RNA 

and Nano drugs are showing very promising results and it can be considered as the future of cancer treatment [52-

59]. 

Cancer Vaccine 

Cancer vaccines or therapeutic cancer vaccines are the newer attempt to treat cancer, where it is used to treat 

existing cancer or to avoid development of cancer [60-69]. Research is going on cancer vaccines mainly against 

breast, lung, colon, skin, kidney and prostate cancers [70]. 

There are different approaches of mechanism of cancer vaccines. One style is to separate proteins from 

cancer cells and to immunize patients against those proteins. These proteins act as the antigens and stimulate the 

immune system to kill cancer cells [71-76]. Another method involves generation of an immune response in patients by 

using oncolytic viruses. This is considered as the better option as it provides ‘patient specific vaccine’ where viruses 

are engineered to selectively replicate in tumor tissue hence they can express the immune stimulatory protein [77-

79]. Basically cancer vaccines work by delivering target antigen to dendritic cells. These cells exist in antigen 

processing site. Dendritic cells get activated by adjuvants which are present in the vaccines [80-83]. Immune system 

reacts to this by increasing number of T-cells and transferring to lymph node. Followed by this, activated DCs 

provide antigen to T-cells; which identifies its associated antigen and gets activated [84]. This allows production of 

cytokines from CD4+ cells which triggers full maturation of CDT cells. Subsequently CD8+ multiplies and circulates 

extensively all over the body [85-87]. When a cell containing target antigen of this activated T-cell comes in range, it 

results in lysis of that cell which gives antitumor response (Figure 2). Currently cervical, oropharyngeal cancer 

(against HPV) and liver cancer vaccines (against Hepatitis B virus) are approved in the world [88,89]. 

Figure 2. Major features of cancer vaccines. 

CONCLUSION 

Hence, in conclusion, cancer vaccines are emerging as long lasting, appealing method for antitumor 

immunity [90]. As first anti-tumor cancer vaccine has got approval, it will give next generation of vaccines with 

improved antitumor action which can be used for the patients who are having high risk of recurrence. Improved 

research on host-tumor interactions and tumor immune escape mechanisms is required for conversion of cancer 

vaccines into clinically accessible medications with wide range of applications [91-93]. The cancer vaccine therapy 

can also be improvised by recognition of distinctive tumor gene or protein product which causes alteration of 

normal cells into tumor cells and leads to cancer progression. Better quality clinical outcomes can be obtained by 

blending vaccine strategies with supplementary mediators which synergistically add to antitumor immunity [94-100]. 
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