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INTRODUCTION
Many aspects such as the differences in mixing and mass hierarchy for lepton and quark sectors force the flavor symmetry 

to be proposed to account for these aspects. Several models based on discrete symmetries were proposed to account for flavor 
aspects [1-7]. For most of these models, some additional Guage scalars (flavons) were considered beside a lot of assumptions and 
extra symmetries were proposed to account for experimental data. This is called up-bottom approach in which the Lagrangian 
is considered to be invariant under a discrete group and each flavor is assigned to one of the irreducible representations of the 
discrete group. After spontaneous symmetry breaking, the recent data of neutrino masses and mixing have to be recovered. 
Another approach is called bottom- up or the residual symmetry approach, at which the lepton mass matrices are considered to 
have remnant symmetry of breaking discrete group. The goal of this approach is to get this discrete group. In this paper, we try to 
summarize the relations between these two approaches and study some aspects of the flavor symmetries. 

LEPTON RESIDUAL SYMMETRIES
Let the Lagrangian of the lepton sector be invariant under a horizontal symmetry group G that is spontaneously broken 

allowing the flavors to acquire their masses. The group G is not broken completely, some of its elements remain unbroken and 
keep the mass matrices of neutrinos and charged leptons invariant. We refer to the unbroken symmetry manifested in the mass 
matrices as the residual symmetry. Let Mν be the mass matrix of the effective light Majorana neutrinos. This mass matrix can be 
diagonalized by a unitary matrix Uν

                                                        (1)

where Diag
vM  = diag(m1, m2, m3). If the Mν manifests such symmetry, one can find unitary matrices Si (the unbroken 

elements of G) that keep the matrix Mν invariant, 

T
v i vi

M S MS =                       (2)

If the matrices Si are real, Mν and Si commute. In the case of non-degenerate neutrino mass spectrum, Mν and Si can be 
diagonalized simultaneously by Uν,
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ABSTRACT

Some aspects concerning the flavor symmetry were studied. Two 
approaches are discussed to deal with flavor symmetry. The desired 
lepton mixing matrix determines the flavor symmetry group up to a certain 
representation. 

The dependence of the lepton mixing matrix on the representation of 
the symmetry group accounts for the differences between models used the 
same symmetry group. 

We discuss the connection between the two approaches to fix flavor 
assignments and alignments of flavor vacuum.

Another approach is called bottom- up or the residual symmetry 
approach, at which the lepton mass matrices are considered to have remnant 
symmetry of breaking discrete group. The goal of this approach is to get this 
discrete group. 
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 † d
i V iU S U Sν =                      (3)

where 
d
iS is a diagonal matrix containing the eigenvvalues of Si . From Eqs. (1), (2)

†t t t Diag
v i v v v v v i v vU S U U M U U S U M∗ =                    (4)

td Diag d Diag
i v i vS M S M=  

              2td d d
i i vS S S=                      (5)

Therefore, the eigenvalues of the symmetry matrix Si are ± 1. The three possible diagonal matrices of Si-up to sign- are

  

1 2 3

1 0 0 1 0 0 1 0 0
0 1 0 , 0 1 0 , 0 1 0
0 0 1 0 0 1 0 0 1

d d dS S S
− −     

     = − = = −     
     − −     

,                               (6)

From Eq (3) the symmetry matrices Si are just unitary transformations of the above three matrices Sdi, i=1, 2, 3. The symmetry 
matrices Si can be calculated by

  
†d

i v i i
Diag

l l l l

S U S U
U mV m

=

=
                                      (7)

  Regardless the form of the mass matrix Mν, it has Z2 × Z2 residual symmetry [8], provided that it has three distinct eigen 
values [9]. We can apply the same procedures for charged leptons. In general, the charged lepton mass matrix ml is not symmetric 
nor Hermitian, so it can diagonalized by two unitary matrices,

Diag
l l l lU mV m=                       (8)

where Diag
lm  = diag(me, mµ, mτ ). It is convenient to use the Hermitian matrix Ml = mlml to deal only with the left handed 

mixing Ul which contributes in lepton mixing UPMNS. It can be diagonalized by Ul ,

( )2†   Diag
l l l lU M U m=                           (9)

We can find unitary matrices Ti that keep the Ml invariant:

   †  ,  , ,l lT M T M e µα α α τ= =                                             (10)  

The matrix Tα and Ml commute, and can be diagonalized simultaneously by Ul ,
†  d

lT U T Uα α=                     (11)

It is easy to prove that 
†

1d dT Tα α =  = 1. Any diagonal unitary matrix can be a solution of d
iT . If the matrices Ul are orthogonal 

rather than unitary, the mass matrices Ml are symmetric, the only solutions- up to sign- are the three matrices d
iS in Eq 6. Without 

loss of generality, we can choose the three 4 matrices [10]

{ }2 / , 2 /1,  d ik m e ik m
eT diag e π π−=                    (12)

{ }2 / , 1, 2 /d ik m e ik m
µT diag e π π−=                   (13)

{ }2 / , 2 / ,  1d ik m e ik mT diag e π π
τ

−=                      (14)

where m must satisfy ( ) mdT Iα = . and k is an integer. As we see, according to the forms of the mixing matrices Uν and Ul we 
can find from Eqs (7) and (11) the unbroken elements of the flavor group G which are responsible of the residual symmetry in 
neutrino and charged lepton mass matrices. In the so called tri-bimaximal symmetry (TBM), Sin2 θ12 =

1
3
, Sin2 θ23 =

1
2 , Sinθ13 = 0. It 

is considered due to the appearing symmetry in the neutrino mass matrix,

( ) ( )

( )

1 1 ...         -  
2 2

1 ... ...      
2

v

a b c

M a b c a b c

a b c

 
 
 
 = + + +
 
 
 + +
 

 

In the case of TBM mixing, in the bases at which the charged lepton mass matrix is diagonal, and hence the total lepton 
mixing comes from the neutrino sector, the three symmetry matrices for neutrino are
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1 2 3

1 2 2 1 2 2 1 0 0
1 1 12 2 1 , 2 1 2 , 0 0 1
3 3 3

2 1 2 2 2 1 0 1 0
S S S

− − − −     
     = − − = − − = −     
     − − − − −     

                 (15)

The horizontal symmetry group G is the group generated by the matrices {Si , Tα}. One can choose one of the Si and one 
of Tα and consider the other matrices of Si and Tα as accidental symmetries of the mass matrices 5 of neutrino and charged 
leptons [10]. It was claimed by using all Si matrices and the Te as the generators of the horizontal symmetry group, that S4 is the 
unique symmetry of tri-bimaximal in lepton sector and any group can explain the leptonic horizontal symmetry must contain S4 as 
subgroup [11-13]. It is worth to notice that: The horizontal flavor group depends on the leptonic mixing matrix, i.e. if the mixing matrix 
is changed, the residual symmetry in neutrino sector and that in charged lepton sector remain the same but in new representation 
while the group G that generated by the Si and Tα matrices will be changed. Let us illustrate these results in details, if the horizontal 
group G generated by matrices Si and Tα- the residual symmetry matrices in neutrino and charged lepton sectors respectively- is 
arisen by a leptonic mixing matrix U, we refer to this as old case. On the other hand, if G’ the horizontal group generated by 0Sα
and 0Tα  is arisen by a mixing matrix U0, we refer to this as the new case. If the mass eigenvalues are the same in both cases, and 
the mixing matrices in each sector are related to each other by a unitary rotation as the following

0 0
 1 2,   l lU WU U W Uν ν= =                                   (16)

For neutrino sector, the mass matrices in both cases are related as the following

        0 0
0

1 1 

1 1

     

   

 

Diag

Diag T T

T

M U M U T
WU M U W
W M W

ν ν ν ν

ν ν ν

ν

=

=

=

                   (17)

The residual symmetry matrices in both cases are related as:
† '

1 1 
' † ' †

1 1 1 1 1 1

' ' ' '

     

    

    
T

T
T

T T T

M S M S S W M W S
M W M W W S W M W SW

M S M S

ν ν ν

ν ν ν

ν ν

∗= =

= =

=

                              (18)

So

'
1 1  TS W SW∗=                    (19)

For charged lepton sector, the mass matrices in both cases are related as the following

( )
( )

†2' ' '

2 † †
2 2

†
2 2

     

    W  

 W

diag
l l l l

diag
l l l

l

M U m U

W U m U

W M

=

=

=

                             (20)

The residual symmetry matrices in both cases are related as:
† † † '

2 2
' † † † ' †

2 2 2 2 2 2
' ' '

     

     

   0 †   

l l l

l l

l l

M T M T T W M W T
M W M W W T W M W TW
M T M T

ν

= =

= =

=

                (21)

So
†'

2 2   T W TW=                                  (22)

From Eqs (19), (22) we find that the residual symmetry matrices in the new case are related by unitary similarity transformations 
to the old residual 7 symmetry matrices, so the residual symmetries remain the same but in new representation, but not all the 
generators of G are transformed by the same similarity transformations. So the symmetry group G depends on leptonic mixing 
matrix U. The new leptonic mixing is related to the old one by

†' ' ' † †
v 2 1l lU U U U W WUν= =                       (23)

If W1 = W2 the mixing matrices are the same U’=U but the bases in the two cases are different, Si and Tα transform by the 
same similarity transformation, the horizontal group G remain unchanged but in different representation. So we can say that 
the same mixing matrix U can lead to the same the same group G but in different representation depending on the bases of 
representation of the fields and mass matrices
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CONNECTION BETWEEN RESIDUAL SYMMETRY AND UP-BOTTOM 
In general, consider generic Yukawa coupling term

  . .ijk i j kL h h cψ ϕ θ= +                                              (24)

Assume that the Lagrangian L is invariant under a horizontal symmetry group G and ψ and φ transform according to the 
irreducible representations (IR) Γα and Γβ of G, respectively, the IR Γγ is a result of the tensor product Γα*Γβ and θ transforms 
according to the complex-conjugate IR Γ γ∗ [13] .

( ) ( ) ( )  ,     ,     a am m b bk k c ci iT T Tα α α β β β γ γ γψ ψ ϕ ϕ θ θ→ Γ → Γ → Γ                  (25)

for every T ∈ G. 

Consider (αa, βb|γci) be the Clebsch-Gordan (CG) coefficient of the group G, mixing the states a
αψ in IR Γα with the orthonormal 

states b
βϕ transforming as IR Γβ. The results are an orthonormal state |θ γ c i in IR Γγ

  ) (

) ) (
  

,

  
,

 ,  , ,  

 ,  

c a b
a b

a b c
c

a b ci

c a b

γ α β

α β γ

γ

θ ψ ϕ α β γ

ψ ϕ θ γ α β

 = 

  =  

∑

∑
                    (26)

Multiply from left the projection operator P(T) of the group G with the second line in Eq (26)

  ( ) ( )

( )( ) ( )( ) ( )
,

,

 

|

 ,  

    ,  

a b c
c

a b c
c

P T P T c a bi

P T P T P T c a bi

α β γ

γ

α β γ

γ

ψ ϕ θ γ α β

ψ ϕ θ γ α β

=

=

∑

∑
Multiply from left with

', '
' '' ',  '

a b
c a bc a bγ α βθ γ α β ψ ϕ=∑

( ) ( )( ) ( )' '
'

'
',

' ',  ' ( )  ,  |a b a b b c
a

c
cb

c a b P T P T P T P T c a biα β α β β γ γγ α β ψ ϕ ψ ϕ ϕ θ θ γ α β=∑∑

,

  
'

'
' '

'
' ',  ' ( ) ( ) ( ) ,  a a b c

b
c

a
bc a b T T T c a biα β γγ α β γ α βΓ Γ = Γ∑

                 (27)

By the same way,

'

  
'

, '
' '( ) ( ) ' ',  ' ,  ( )a a b b c c

ca b
T T c a b c a bi Tα β γγ α β γ α βΓ Γ = Γ∑ ∑                              (28)

From Eqs (24), (26), the Yukawa coupling hijk is proportional to the Clebsch-Gordan coefficient,

  ,  hijk hh i j kα β γ= ∗                  (29)

where h is a free parameter. 

Now suppose that the neutrino masses arise from the type-I seesaw mechanism, then the Lagrangian responsible for flavor 
structure of mass matrices can be written as

      '   . .,c
RR R RL y L He h LH v h h cγ γ γ

γ γ γϕ ξ ν ν χ= − − − +               (30)

where L is the SU(2) lepton doublet, eR is the right-handed charged leptons, νR is the right handed neutrinos, and φ, ξ and 
χ are flavons which are Gauge singlets. Every term is assumed to be invariant under a horizontal symmetry group G, with y, h, h’ 
being the Yukawa coupling constants. Take the charged lepton term as an example, suppose that L and eR transform under IRs Γα 
and Γβ respectively and the flavon is transformed under an IR Γ γ that occurs in the tensor product Γα*Γβ , therefore we sum over all 
IR Γ γ appear in this tensor product. After spontaneous symmetry breaking the flavon φ acquire a vacuum expectation value to get 
the mass of charged leptons. From Eqs 24, 29, we can write the Yukawa coupling term of the charged leptons explicitly,

( )
, ,

 ,   .e R c
a b c

b
L L e y a b c γ

γ
γ

α β γ ϕ = − ∗ ∑ ∑                   (31)

Then the charged lepton mass is
( )

,
 ,   e cab

c
m y a b c γ

γ
γ

α β γ ϕ= ∗∑                   (32)
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The horizontal symmetry group G is broken spontaneously via the vacuum expectation values of the flavons φ, χ and χ’. The 
symmetry group G is broken to a smaller symmetry group G’, we call this smaller symmetry as residual symmetry. The generators 
of the symmetry group G’ are the elements of G that keep the vacuum expectation values of the flavons invariant. If Fi are the 
elements of G that keep the vacuum expectation value of φ invariant, then

( ) ,  iFγ γ γϕ ϕΓ =                      (33)

where i = 1, 2, 3. From Eqs. (28), (33),

( ) ' '
, ,

 ,   = ,  ( )e c c cc i cab
c c

m y a b c y a b c Fγ γ γ γ
γ γ

γ γ

α β γ ϕ α β γ ϕ ϕ= ∗ ∗ Γ∑ ∑              (34)

 †
 ' '

, ',
( ) ( ) ',  ' 'aa i bb i c

a b
y F F a b cα β γ
γ

γ

α β γ ϕΓ Γ ∗∑                   (35)

Consequently, we end to the usual form of the mass invariance equation,

( ) ( )†   i e i eF m F mα βΓ Γ =
                                  (36)

Similarly, for the neutrino sector, if Si are the elements of G that keep the vacuum expectation value of ξ and χ invariant, then

( ) ( ),    iS h Siγ γ γ γ γ γξ ξ χ χΓ = Γ =                    (37)

If νR transforms under IR Γβ, the Dirac neutrino mass matrix and right handed neutrino mass are

( ) ( )
, ,

 ,  , '  ,  D c R cab ab
c c

m h a b c m h a b cγ γ
γ γ

γ γ

α β γ ξ β β γ χ= =∑ ∑              (38)

Similar to the case of charged leptons Eq (36), the mass matrix invariance equations in neutrino sector can be of the form:

( ) ( )
( ) ( )
( ) ( )

†

†

 ,

  ,

   ,  
T

i D i D

i R i R

i i

S m S m

S M S M

S M S M

α β

β β

α α
ν ν

∗

Γ Γ =

Γ Γ =

Γ Γ =                    (39)

Where
1

 T
D R DM m M mν

−

=                    (40)

CONCLUSION
The previous discussion we link between the generators of the residual symmetry (Si, Fi) and the dynamical inputs (IRs of 

fields and vacuum alignments). If we consider a certain group as horizontal symmetry group such as A4 or S4, we can use Eqs 
(39) to write constrains on the Irreducible representations that lead to the desired mixings. The group A4 is generated by T d e 
in Eq (12) with k=1, m=3 and S2 in Eq (15), so the vacuum alignments of the flavons φ and χ that are kept invariant under the 
action of Tde and S2 are

 (1,0,0), (1,1,1)Xϕ = =

For the group S4, it is generated by the matrices Tde , S1, S2 and S3 in Eqs (12, 15) with k=1, m=3, so the vacuum alignments 
of the flavons are as follows,

In the irreducible representation 2

      
 (0,0), (1,1)Xϕ = =

In the irreducible representation 3,

   
 (1,0,0), (0,0,0)Xϕ = =

In the irreducible representation 3’,
 (1,0,0), (1,1,1)Xϕ = =
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