
Journal of Global Research in Computer Sciences e-ISSN: 2229-371X

GRCS| Volume 16 | Issue 2 |June, 2025 24

New method for Symbol Resolution

Sinisa Milivojevic*

Department of Computer Science, An independent contractor, Larnaca, Cyprus

Review Article

Received: 01-May-2025,

Manuscript No. GRCS-25-165084;

Editor assigned: 02-May-2025,

PreQC No. GRCS-25-165084 (PQ);

Reviewed: 12-May-2025, QC No.

GRCS-25-165084; Revised: 20-

May-2025, Manuscript No. GRCS-

25-165084 (R); Published: 27-May-

2025, DOI: 10.4172/2229-

371X.16.2.003

*For Correspondence:

Department of Computer Science,

An independent contractor,

Larnaca, Cyprus

E-mail: sinisa@cytanet.com.cy

Citation: Milivojevic S. New method

for Symbol Resolution. J Glob Res

Comput Sci. 2025;16:003.

Copyright: © 2025 Milivojevic S.

This is an open-access article

distributed under the terms of the

Creative Commons Attribution

License, which permits unrestricted

use, distribution and reproduction

in any medium, provided the

original author and source are

credited.

ABSTRACT

This paper provides the result of an extensive research that resulted in

algorithm that provides much more efficient searching through Symbol Tables

containing reserved words, keywords, operators, functions and similar. A new

(so far most efficient) method has been provided which has been thoroughly

tested. That method required the utilisation of the hashing. Many hashes have

been tested, of which only few could render required results. This resulted in

the the invention and development of new hashes, by the author. All necessary

information from this research is presented including characteristics of two

known algorithms, and including the efficiency of the utilised hashes and a total

speed of execution for the entire symbol table, on two different CPUs.

Keywords: Symbol tables; New search method; Sparse vector; Hashing

CCS CONCEPTS: Computing methodologies, Mathematics of computing,

Software and its engineering.

INTRODUCTION

All compilers and interpreters, have their own set of symbols, which comprise

reserved words, keywords, function names and similar. In order to recognise

that set from other literals, there is a need to have fast method to recognise

whether a separate literal used is one of its symbols. That is exactly what is

meant by the term “symbol resolution”. There were many methods used in the

past, one of which is hashing. The crux of this paper is dedicated to the

description of methods that use a family of hashes, which are generated with

both byte and bit operations on the symbols. That family of hashes is better

known as xxhashes.

 DESCRIPTION

Most of the compilers / interpreters are storing their symbols as a packed array

of structures, usually written in C programming language. These structures

usually contain the string for the symbol literal, its length and the fields for the

Journal of Global Research in Computer Sciences e-ISSN: 2229-371X

GRCS| Volume 16 | Issue 2 |June, 2025 25

attributes which provide more detail on what are the characteristics of the symbol. This paper presents the research

that has developed a method that involved the usage of the sparse and imperfect vectors that store indices for the

entries in the above described packed symbol vector. This method is called indirect indexing, since valid sparse,

imperfect vector whose elements contain valid and invalid values, since this is a sparse vector. Each of the valid

values is the index in the packed, perfect vector that stores all symbols.

To put it in a formula, it looks like this:

Symbol= Vector_of_Symbols [Sparse_Vector [x]];

where x is (obviously) the index in the sparse vector.

This approach has necessitated that a method is invented for the calculation of the indices (denoted as ‘x’ in the

above formula) in the sparse vector containing values that point to the valid entries in the packed vector containing

symbols. These symbols are reserved words, keywords, function names, operators et cetera.

A very strict criteria has been set that would necessitate that the above indices are calculated only from the string

literals of these symbols, but in the manner that the sparse vector contains only one index for each separate symbol.

That is the crux of the method that was developed.

This is better visualised in you start from an example. If you look at one of the latest MySQL include file, lex.h, you will

notice that there are 845 symbols. However, of these only 803 symbols are relevant for this research. Those 803

symbols include all the reserved words, keywords, operators and functions. The rest are optimiser hints, that can not

be treated in the same way, because they contain duplicates, which is incompatible with any symbol resolution. Those

are also treated totally differently in the current MySQL code.

The tests were executed on the last 8.0 release available at the time. Since then, new versions and releases have

come out, with some changes in the symbol table. All those were tested too and those were very similar to the the

original results (presented in the next chapter).

Using imperfect, sparse vector necessitated an algorithm that would find the smallest possible vector that would

resolve the symbols. Hence, another objective of this research was to use an optimum-seeking algorithm that would

run symbol resolution until they would all fit in the vector, without any duplicates. It was decided that this vector

should have no more then 64 K entries. For that purpose a separate array was created, which contains all primes

between 16 K and 64 K. Those primes were used for the searching of the smallest vector, where all the entries (in

this case 803 of them) would fit, without duplicates. This vector was then generated as an obligatory part of the

algorithm results. That also means that the hashing algorithm used should provide a 16-bit value as a final result.

This was easily achieved by obtaining a 32-bit hash and calculating the remainder of that value with the size of the

sparse vector.

In such a system, each sparse, imperfect vector should have been initialised. In this system, 0 (zero) would be a valid,

although highly improbable entry, since the last prime, in the above mentioned array, is definitely smaller then 64K.

Hence, UINT16_MAX would be totally impossible entry, as the maximum size of the vector would be smaller. That is a

reason why every entry in the sparse vector would be initialised with a value of UINT16_MAX. That has made

searching algorithm easier to design. Simply, if calculated index for the sparse vector would contain a value of

UINT16_MAX, then that entry is valid and it was written into that spot. If the value found was smaller, then it would

Journal of Global Research in Computer Sciences e-ISSN: 2229-371X

GRCS| Volume 16 | Issue 2 |June, 2025 26

indicate that the algorithm has hit upon a duplicate entry. The code would then proceed with a new, larger vector,

until a vector was found that would accommodate all symbols, in this case 803 of them. The sizes of vectors, for the

usable hashes, are also included in the results.

It should be mentioned that the results of each successful algorithm included the generated sparse vector containing

all entries including the valid ones (in this case 803 of them), vector’s size (as number of entries), some info on the

successful completion and the speed of the resolution of all 803 symbols, in microseconds. This also means that the

runtime code only needed the vector and the xxhash algorithm which returns the symbol. This also means that the

size of the product will include additional storage for the array, whose size is circa 100 Kbytes. For the contemporary

computers that is a small price to pay. It was discovered during research that those hashes that were successful,

managed to do with less then 64 K, while the others could not fit even in much larger vectors. This is due to the fact

that the unsuccessful algorithms have produced duplicates even with much larger vector sizes. Some produced

duplicates even with 32-bit vector sizes.

It should be pointed out that the speed and efficiency of searching and generating sparse vector, and filing it up with

indices in the right places, is not relevant. That is because this step is performed during compiling of the SQL

interpreter (or any other interpreter or compiler). The important efficiency and speed is the one in runtime, which

deals only with symbol resolution.

At the very start of the research it was clear that classical hashes, that only use byte arithmetics, can not produce

desirable results. Hence, this is a reason why it was mandatory that it necessitate usage of hashes which use a

combination of both byte and bit operations. Shortly, we use the existing term xxhashes for those hashes that use

operations on both bytes and bits.

The research has tested over 30 (thirty) of the existing xxhash algorithms, but found only 4 (four) of those that were

successful in symbol resolution.

Further analysis showed that many xxhash algorithms required initialisation with some value. Mostly, the authors

suggest the use of the length of the previous symbol for the initialiser. Some other suggest that initialisation is done

by the xxhash obtained from the previous symbol calculation. That approach is impossible with compilers /

interpreters, since those have their syntax, which is very varied and can combine symbols in many different ways. In

that context there is no such thing as a previous or next symbol.

Also, many of the xxhash algorithms required that the final calculation involves a bitwise operation (usually XOR) on

the obtained result. This meant that a method had to devise the usage of some seed.

In order to solve both of the problems, two different algorithms were designed for the random generation of two sets

of seeds, one for the initialisation of the xxhash and the other for the final bit operation. One algorithm was used for

the generation of the array of 7 (seven) random seeds and second, completely different, algorithm was used for the

generation of the array of 2099 (two thousand and nineteen nine) random seeds. It is not a coincidence that both of

these numbers are primes.

Since only 4 (four) of the existing algorithms lead to the desired results, it was necessary that this research also

develops a set of new hash algorithms. In total, 8 (eight) new xxhashes were designed, some of which performed

significantly better then the known ones. It must be pointed out that, of those 8 (eight) new xxhashes, 3 (three) were

loosely inspired by the existing xxashes. Word “inspired” was used because those algorithms required heavy changes

Journal of Global Research in Computer Sciences e-ISSN: 2229-371X

GRCS| Volume 16 | Issue 2 |June, 2025 27

in order to meet the above described criteria and provide usable results. This practically created new algorithms, with

entirely different efficiency …. The original algorithms will be mentioned in the code listings of the new xxhashes.

As already mentioned, the example on which the algorithms were developed and tested was SQL interpreter and

more precisely the symbols in MySQL implementation of SQL. One of the characteristics of SQL is that language is

case- insensitive. Since symbols are all uppercase in MySQL implementation, that required the addition of the code

that converts all letters into uppercase. This could have been achieved by table lookup, but finished by using a simple

ternary operator. This code was not included in the presentation of the new xxhashes, nor was it included in the

calculation of the algorithm efficiency. The reason for that is that, since SQL is case-insensitive, a programmer or

query designer can write symbols in the queries with all possible variants of the letter cases.

In order to test the validity of the final result, many tests were included. First of all, the above described vector and

the indices were calculated with upper-case symbols, while testing was done with lower-case symbols. The sparse

vector was initialised with UINT16_MAX values, so if the hash returned that value as the valid index, then entire

calculus failed. After that test, found symbol length was compared with input symbol length and two strings were then

compared for equality.

PRESENTATION OF THE RESULTS

Results presented in this paper contain all of 12 (twelve) xxhashes, but, for the comparison purposes, these also

include two other, historically important, methods. First one is used in the current MySQL implementation, and it is

based on the digital search method. It can be found in the MySQL source code directory sql/ as a file sql_lex_hash.cc.

Beside the above method, another existing algorithm was included and that is a double hashing algorithm. It was

implemented during this research, but again, only for comparing their efficiency and speed with the new method.

All of results are presented in the following table. Table has the following columns:

 Title of the method.

 The algorithm used.

 Reference for the algorithm, for the existing algorithms only. These are numbers corresponding to

Bibliography chapter.

 The algorithm eThciency, where ’n’ stands for the number of bytes (characters). Double hashing, although,

has difterent eThciency calculus.

 Sparse vector size.

 Total time (in microseconds) for the resolution of all 803 (eight hundred and three) symbols on Intel i5 CPU @

4.0 GHz, by the method described in the previous chapter.

 Total time (in microseconds) for the resolution of all 803 (eight hundred and three) symbols on ARM, actually

M3 CPU @ 4.0 GHz, by the method described in the previous chapter.

A table containing all of the data for those seven columns is presented below, where the title of each column is fully

explained in the above list.

Journal of Global Research in Computer Sciences e-ISSN: 2229-371X

GRCS| Volume 16 | Issue 2 |June, 2025 28

Table 1. Presentation of the results.

Method title Algorithm Reference
Algorithm

efficiency

Sparse vector

size in number of

entries

Total time on

i5 @ 4 GHz in

µsec

Total time on M3

@ 4 GHz in µsec

Digital search Tries [1] 8*n + 8 - 36 46

Double

hashing
hash [2] m/n(1/(1-n/m)) m=2753, n= 67 46 44

Bob Jenkins

1
xxhash [3] 8*n + 10 51347 23 15

Bob Jenkins

2
xxhash [4] 5*n + 35 43331 22 16

Paul Hsieh

(modified)
xxhash [4] 5*n + 17 54401 21 16

fnv_32a_str

(modified)
xxhash [5] 4*n + 2 49581 16 11

Sinisa 1 xxhash new 4*n + 9 40823 24 16

Sinisa 2 xxhash new 5*n + 9 45061 20 13

Sinisa 3 xxhash new 6*n + 9 45317 25 16

Sinisa 4 xxhash new 4*n + 7 52951 25 12

Sinisa 5 xxhash new 4*n + 4 54401 20 13

Sinisa 6 xxhash new 3*n + 6 42397 19 14

Sinisa 7 xxhash new 4*n + 1 45751 17 16

Sinisa 8 xxhash new 5*n + 5 50951 19 17

In the above table, 3 (three) runs were necessary on Intel i5 to provide average results for the speed of resolution in

µsec, and with a very small standard deviation. On the M3, however, 12 (twelve) runs were necessary to get results

with the approximately same reliability, meaning with the approximately same and acceptable standard deviation.

C at the above table also shows that speed of M3 processor is significantly faster than the one of Intel’s i5. That is,

actually, expected behaviour. What was unexpected is that rankings in the speed of the algorithms were very different

between two CPU’s. That could have been explained only with different relative costs of different operations on the

bytes and bits for different CPUs.

Intel’s CPU has higher costs for division and remainder then other operations, including byte operations like addition

and multiplication. ARM CPU has smaller variations among different operations and it proved much trickier to get

reliable costs of operation. This started a new research with the aim of establishing more reliable operation costs for

both CPUs. When this research is designed and finished, its results will be provided in another paper.

PRESENTATION OF THE NEW HASHES

In this chapter, we shall present hashes in the manner that they were used. They are simply returning the index in the

sparse vector, while doing some necessary checks. Hashes that are used in production do not need to do any checks.

They should just return the symbol, as in the formula already provided above, which we are repeating here:

Symbol= Vector_of_Symbols [Sparse_Vector [x]];

A hash function can return a pointer to the symbol. Some program opt to check for error, in which case a NULL is

Journal of Global Research in Computer Sciences e-ISSN: 2229-371X

GRCS| Volume 16 | Issue 2 |June, 2025 29

returned for the pointer.

As it is already indicated, hashes presented here return that ‘x’ from the above formula. You will also note that these

hashes return the unsigned 32-bit unsigned integer. So, for the implementation of this method, that value is

converted to 16-bit unsigned integer. It is done by calculating the remainder of the 32-bit value by the sparse vector

size. This is already explained at the start of this article. All the hashes, as well as many programs written during this

research were coded in C standard 2017 [6]. C 2023 was, unfortunately, not finished when the research started. It is

my personal opinion that C language, especially it’ latest standards, is the best tool for system programming. C++ is

not suitable for that purpose, in my humble opinion.

Also, as mentioned above, conversions to uppercase are omitted in the presentation of new hashes.

So, here are the source codes for the new hashes. The code provided here is, from now on, in the public domain.

SOURCE CODE

Journal of Global Research in Computer Sciences e-ISSN: 2229-371X

GRCS| Volume 16 | Issue 2 |June, 2025 30

Journal of Global Research in Computer Sciences e-ISSN: 2229-371X

GRCS| Volume 16 | Issue 2 |June, 2025 31

REFERENCES

1. Donald E. Knuth. The Art of Computer Programming: Sorting and searching, Volume 3. Digital searching.

Addison-Wesley. 1998.

2. Sedgewick R. Algorithms in C. Addison-Wesley. 2011.

https://books.google.co.in/books?hl=en&lr=&id=cYULBAAAQBAJ&oi=fnd&pg=PR12&dq=The+Art+of+Computer+Programming.+Volume+3.+Sorting+and+searching&ots=KMzzHbLo2I&sig=TrVxcpxx8ieKpcvXR45yK8yg39Y&redir_esc=y#v=onepage&q=The%20Art%20of%20Computer%20Programming.%20Volume%203.%20Sorting%20and%20searching&f=false
https://books.google.co.in/books?hl=en&lr=&id=MTpsAQAAQBAJ&oi=fnd&pg=PR6&dq=Robert+Sedgewick.+1998+Algorithms+in+C.+Addison-Wesley&ots=QhnHzJHdhQ&sig=yGP9MkFlbH0LPTYyW9YC5H8bgxQ&redir_esc=y#v=onepage&q=Robert%20Sedgewick.%201998%20Algorithms%20in%20C.%20Addison-Wesley&f=false

Journal of Global Research in Computer Sciences e-ISSN: 2229-371X

GRCS| Volume 16 | Issue 2 |June, 2025 32

3. Jenkins B. Jenkins hash function. 1997.

4. Jenkings B. Dr. Dobb’s Journal. 1997.

5. Vo P, et al. FNV Hash. 2013.

6. Gusted J. Modern C. Manning. 2023.

https://en.wikipedia.org/wiki/Jenkins_hash_function
https://github.com/haipome/fnv/blob/master/fnv.c

