Research & Reviews: Journal of Material Sciences

Progress in Ceramic Materials

Neha Gupta*

Department of Ceramic Engineering, National Institute of Technology (NIT) Rourkela, India

Editorial

Received: 01-Mar-2025, Manuscript No. JOMS-25-169992; Editor assigned: 4-Mar-2025, Pre-QC No. JOMS-25-169992 (PQ); Reviewed: 20-Mar-2025, QC No JOMS-25-169992; Revised: 26-Mar-2025, Manuscript No. JOMS-25-169992 (R); Published: 30-Mar-2025, DOI: 10.4172/2321-6212.13.1.004

*For Correspondence

Neha Gupta, Department of Ceramic Engineering, National Institute of Technology (NIT) Rourkela. India

E-mail: neha.gupta@nitrrkl.ac.in

Citation: Neha Gupta, Department of Ceramic Engineering, National Institute of Technology (NIT) Rourkela, India. RRJ Mater Sci. 2025.13.001.

Copyright: © 2025 Neha Gupta, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

INTRODUCTION

e-ISSN: 2321-6212

Ceramic materials are essential for their durability, thermal resistance, and chemical stability. They are widely used in electronics, energy, and biomedical sectors. This article highlights five research domains: advanced structural ceramics, ceramic composites, electronic ceramics, bio-ceramics, and porous ceramics.

Key Research Areas in Ceramic Materials

Structural Ceramics: Alumina and zirconia are used in cutting tools, aerospace parts, and protective coatings [1].

Ceramic Composites: Ceramic-matrix composites enhance toughness and fracture resistance, crucial for turbine engines [2].

Electronic Ceramics: Piezoelectric and ferroelectric ceramics are used in sensors, capacitors, and memory devices [3].

Bioceramics: Hydroxyapatite-based ceramics are employed in dental implants and bone grafts [4].

Porous Ceramics: Porous ceramics enable filtration, catalysis, and biomedical scaffolds [5].

REFERENCES

- 1. Novoselov KS. Electric field effect in atomically thin carbon films. Science, 2004; 306: 666–669.
- 2. Bhushan B. Springer Handbook of Nanotechnology. Springer. 2017.
- 3. Cao G. Nanostructures and Nanomaterials. Imperial College Press. 2004.
- 4. Rao CNR. Nanotubes and Nanowires. Royal Society of Chemistry. 2015.
- 5. Dresselhaus MS. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Springer. 2001.