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INTRODUCTION
Serre has given a comprehensive theory of linear representation of finite groups in [1]. It has been obtained in the group 

theory that the number of simple FG− modules is equal to the number of conjugacy classes of the group G such that the character-
istic of the field F does not divide the order of G. A lot of work is done for the classification of groups in terms of its representation 
and characterization.

By Clifford, each element of a semigroup is uniquely determined by a matrix over a field and a complete classification of 
the representations of a particular class of a semigroups is given in [2-4]. Moreover, irreducible representations of a semigroup 
over a field is obtained as the basic extensions to the semigroup of the extendible irreducible representations of a group, and the 
representations of completely simple semigroup is also constructed in [2-4].

Stoll has given a characterization of a transitive representation, and obtained a transitive representation of a finite simple 
semigroup, see [5]. The construction of all representations of a type of finite semigroup which is sum of a set of isomorphic groups 
is also obtained. Munn obtained a complete set of inequivalent representations of a semigroup S which are irreducible in terms of 
those of its basic groups of its principal factors. He also introduced the principal representations of a semigroup in [6]. A represen-
tation of semigroup whose algebra is semisimple is characterized in [7,8]. The representation of a finite semigroup for which the 
corresponding semigroup algebra is semisimple is also obtained. An explicit determination of all the irreducible representations 
of nT  is due to Hewit and Zuckerman in [9].

There is a one-to-one correspondence between the representations of a group G and the nonsingular representations of the 
semigroup S, which preserves equivalence, reduction and decomposition [10].

In the case of an irreducible representation of a finite semigroup, the factorization can be avoided and an explicit expres-
sion of such representation is given in [11]. We consider a full transformation semigroup nT  to obtain its combinatorial property 
with regard to its irreducible representations. There exists a non-zero linear transformation satisfying some specific conditions in 
Theorem 7.3. 

It is observed that for the basis B  of a vector space Fm
q , there is a natural one-to-one correspondence (between the rep-
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ABSTRACT

In this paper we discuss the representations of a full transformation 
semigroup over a finite field. Furthermore, we observe some properties of 
irreducibility representation of a full transformation semigroup and discuss 
the linear representation of a zero-adjoined full transformation semigroup. 
Moreover, we characterize the linear representation of a full transforma-
tion semigroup over a finite field Fq (where q is a prime power) in terms of 
Maschke’s Theorem. Finally, we observe that there exists an isomorphism 
between the full matrix algebra (Fq)m and the space of all linear transforma-
tion L(Fq

m) on an m-dimensional vector space Fq
m 
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resentations of a full transformation semigroup IB  over a finite field Fq and those of the algebra Fq[IB ]) which preserves, 
equivalence, reduction and decomposition into irreducible constituents.

Consequently, we reinterpret the Maskhe Theorem [12] regarding the algebra Fq[IB ], i.e., the algebra Fq[IB ] is semi-
simple if and only if the characteristic of Fq does not divide the order mm of the full transformation semigroup IB .

The representation of full trasformation semigroup over a finite field is discussed in Section-8, specially the Maschke’s 
theorem is restated for the semisimplicity of the semigroup algebra Fq [IB ], see Theorem 8.1 Finally, a linear algebraic result 
regarding the isomorphism between the full matrix algebra (Fq)m and the space of all the linear transformations on Fq

m is given in 
Theorem 8.2.

PRELIMINARIES
Definition 

A transformation semigroup is a collection of maps of a set into itself which is closed under the operation of composition of 
functions. If it includes identity mapping, then it is a monoid. It is called a transformation monoid.

If (X,S) is a transformation semigroup then X can be made into semigroup action of S by evaluation, x.s=xs=y for s  S, and 
x,y  X. This is the monoid action of S on X, if S is a transformation monoid.

Hewitt and Zuckerman gives a treatment of the irreducible representation of the transformation semigroup on a set of finite 
cardinality [8]. The result for the case of a finite semigroup S with F[S] semisimple was given by Munn in [13].

The full reducibility and the proper extensions of irreducible representations of a group to those of a semigroup are the basic 
extensions.

THEOREM 2.2

Full reducibility holds for the representations of a semigroup S over the field F if and only if

Full reducibility holds for the extendible representations of G over F, and

The only proper extension of a proper representation of G to S is the basic extension [14].

A representation M of S is homomorphism of S into the multiplicative semigroup of all (α,α) matrices( where α is an arbitrary 
positive integer) such that M(x) ≠ 0 for some x  S. If the set {M(x): x  S} is irreducible i.e., if every (α,α) matrix is a linear combi-
nation of matrices M(x), then M is said to be an irreducible representation of S. The identity representation is the mapping that 
carries every x  S into the identity matrix. 

Full transformation semigroup

The idea of studying nT  was suggested by Miller (in oral communication). The problem of obtaining representations of semi-
group as distinct from groups have been first studied by Suskevic. Clifford has given a construction of all representations of a class 
of semigroups closely connected with Tn. Ponizovski has pointed out some simple properties of nT . In the present discussion, 
we relate the irreducible representations of nT to that of its semigroup algebra L( nT ). The set of all transformations of set X into 
itself is called the full transformation semigroup under the binary operation of multiplication as the composition of transformation 
analogue of the symmetric group GX. Let Xn = {1,2,3,….,n} be a finite set and denote the semigroup TXn of all the self-maps of Xn 
into Xn. If cardinality of Xn is n, denote Tn for TXn then the cardinality of Tn is nn [15].

Example

The set S={e,a,x,y} is a semigroup under the multiplication. The Cayley’s multiplication table of S is given as follows [16].

 
. e a x y
e e a x y
a a e x y
x x y x y
y y x x y

If the mapping { }: 1, 2XSφ → =J is given by xφ β= , xφ β= , xφ β= , and yφ γ= , then ф embeds S in { }1,2T . It can also 

be seen that the map { }a,e,x,yψ →: S T  is defined by

( )
e a x y

e
e a x y

ψ
 

=  
  ,
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(x) ,
e a x y
x x x x

ψ
 

=  
 

(x) ,
e a x y
x x x x

ψ
 

=  
 

and

(y)
e a x y
y y y y

ψ
 

=  
  .

embeds S into { }a,e,x,yT .

Notice that y is a right regular representation of S, where Sψ →: S T  as defined above (where ψ(e), ψ(a), ψ(x), ψ(y) TS) 
is such that for any s  S, we have

( )( )e s seψ =
( )( )
( )( )
( )( )

a s sa

x s sx

y s sy

ψ

ψ

ψ

=

=

=

So ψ is a right regular representation of S.

Regular representation of a transformation semigroup

Let K denote the set of right zero elements of a semigroup S. Then, ks ≅ T  if and only if

(i) for all x in K, and all a,b in S, xa=xb implies a=b;

(ii) if α is any transformation of K, then there exists a in S such that xα = xa for all x  K.

An element α of XT  is idempotent if and only if it is the identity mapping when restricted to Xα. Suppose that X is a set of 
cardinality n. Then, the full transformation semigroup XT  contains the symmetric group GX of degree n. If α r Xα= , then the rank r 
of α is defined by r Xα= , and the defect of the element a is given by n-r. If b is an element of XT  of rank r<n, then there exists 
elements γ and δ of XT  such that g has the rank r+1, δ has the rank n-1, and β =γδ (we can choose δ as an idempotent, and γ 
different from β at only one part of X). By induction, every element of XT  of defect k(1 ≤ k ≤ n-1) can be expressed as the product 
of an element of GX and k number of(idempotent) elements of defect 1, see also [17].

If α  XT  is of defect 1, then every other element of ST  of defect 1 can be expressed in the form λαμ with λ and μ are in GX. 
If α is an element of ST  of defect 1, then <GXα>= ST .

Let X=S be a semigroup, an element ρ  ST  is said to be a right translation of S if x(yρ) = (xy)ρ for all x,y  S and λ  XT  
is said to be a left translation of S if (xλ)y = (xy)λ for any x,y  S. The left and a right translations λ and ρ, respectively, are called 
linked if x(yl) = (xr)y for all x;y 2 S.

Note that λaλ = λaλ and ρaρ = ρaρ, if λ and ρ are linked, then

,a ap a aλλλ λ ρρ ρ= =
Let S = {e,f,g,α} be a semigroup with the operation “.” given by the Cayley’s table

. e a x y
e e a x y
a a e x y
x x y x y
y y x x y

Cayley’s table

The transformation

e f g a
g g e g

λ
 

=  
 
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is a left translation which is not linked with any right translations of S. We recall the following proposition regarding the 
semisimple algebra.

PROPOSITION
An algebra A is a semisimple if and only if A-module of A is semisimple.

Definition

Let S be a semisimple with zero element z. The contracted algebra F0[S] of S over F is an algebra over F containing a basis 
B  such that B  U0 is a subsemigroup of F0[S] isomorphic with S. A semisimple algebra can also be regarded as a contracted 
semigroup algebra.

We recall the following facts regarding the representations of a semisimple algebra.

Lemma

(a) Let ℜ  be an algebra having finite order over the field F, and let ℜ  be a radical ofA . Then, every non-null irreducible 
representation of A  maps A  into 0, and so it is effectively a representation of the semisimple algebra A /A .

(b) Let ф be any faithful representation of a semisimple algebra A  and let P be an n*n matrix over τ . Then, P is non-
singular if and only if ф(n)(P) is non-singular [18].

THEOREM 4.4

(6, Th. 5.7). An irreducible algebra of linear transformations is simple.

If A  (F)n, then the transformation x → Ax of a vector space V is linear transformation τ  of V to V, and the mapping A → A 
is an isomorphism of (F)n upon the algebra [ ]VTL  of all linear transformations of V. A homomorphism ф of A into (F)n is called a 
representation of A  of degree n over F. In other words, to each element x of A there corresponds an n*n matrix ф(x) such that

ф(x+y) = ф(x)+ф(y);

ф(xy) = ф(x)ф(y);

ф(αx) = αф(x):

for all x,y in NT  and α in F.

The irreducible representations of semigroups

Let f be an element of NT . Then, f splits the set {1,2,..,n} into a number p of nonvoid disjoint subsets, each of the form {x:f(x)=a} 
for some a  rang( f). Obviously, f is determined by these sets and the corresponding a's. For nonvoid subset s of {1,2,…,n}, let 
s* be the least element of s. Write the sets {x: f(x)=a} in the order s1,s2,..,sp where s*

1<s*
2<…< s*

p, and represent f by the symbol

1 2

1 2

...  

...
p

p

s s s
a a a
 
  
  ,

where 1 £ Þ p £ Þ n, the class of sets s1,…,sp is a decomposition of {1,2,..,n} of the kind described above, and a1,a2,…,ap are any 
distinct integers lying between 1 and n. The expression s1,..,sp will always mean a decomposition of {1,2,..,n} into nonvoid, disjoint 
subsets with s*

1<s*
2<…< s*

p. The letters t and w will be used similarly. Also a1,a2,...,ap will always mean any ordered sequence of 
distinct integers from 1 to n; the letters c and d will be used similarly.

For p = 1,2,…,n, let B p be the set of all elements of NB  whose range contains just p elements, that is,

1 2

1 2

..
...

p

p

s s s
a a a
 
 
  ,

for a fixed p. Strictly speaking, NB depends upon n as well as p. However, only one value of n will be treated at one time. 
The set NB is obviously the symmetric group Sn. The set pB

1 is a semigroup with the trivial multiplication fg=f. No other pB  is a 
subsemigroup of pB. It will be convenient to have the semigroup pB U{z}, with multiplication defined by

,

,

.

p

p

p

z o z f o z z o f z for all f

fg if fg
f o g

z if fg

= = = ∈

∈=  ∉

B

B

B

Using a linear algebraic result, we have the following formula regarding the rank of a linear representation of nT .
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THEOREM 5.1

Let M be an irreducible linear representation of nT , and let S={f: f nT  and M( f)=0}, then

rank[M( nT )]

1
1

, if Sis void

! , if Sis nonvoid, i.e., if S

n

P
n P

j j
j

n

n j B=
=


=  − = ∪


∑
8>><

Proof

Suppose the irreducible linear representation ): (n nM T L T→  is as given above. Since M is irreducible representation of nT

. Thus, using a result in, the set S is void or 1 .P
j pS B== ∪

Since,

[ ] [ ] ( )dim dim dim ,n nF F ST F M T= +   

where F is a field of characteristic 0.

Since,

[ ]dim ,n
nTF n=

and, 

1

! if Sisnonvoid.
P

j

j
S

=


= 
∑

O if S is void,

We have

( ) ( )dim .n nT TrankF M F M=      

Thus,

( ) ( ) [ ]( )
1

0 ,

! .
dim dim

n

P
n

j

n if S is void

n j
n

if S is nonv
n

oid
rankF M F F ST T

=

−

−


= − =       

∑

Therefore,

This completes the proof.

Let X={x1,x2,…,xn} be a set of cardinality n and let Sn denote the set of all single-valued maps of X to itself. We have the follow-
ing characterization of a map from Sn into the set of all n*n matrices Dn over the field F, see also.

THEOREM 5.2

Let M:Sn →Dn be a map defined by M(f) = Af  Dn, for f  Sn. Then, M forms a homomorphism of Sn into Dn. If, in particular, 
Sn is a semigroup S, then M becomes a representation of { }S z∪

into Dn (where z is a zero element).

Proof

For any two single valued maps f and g in Sn, the product fg is also a single valued map, therefore fg  Sn.

Moreover, since M(f)=Af  Dn and M(g)=Ag  Dn, therefore M(fg)=Afg=Af.Ag=M(f).M(g)  Dn. In particular, if i is the identity map 

( )
1

0 ,

! .

n

P
n

j

n if S is void

n j if S is nonvoid
nrankF M T

=

−

−


=   

∑
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on X, then M(i)=Ai=In  Dn, then we have;

M(ig)=M(g)=Ag=In:Ag=Ai:Ag=M(i)M(g), and

M(f i)=M(f)=Af=Af:In=Af:Ai=M(f):M(i).

Therefore, M defines a homomorphism of Sn into Dn.

If, in particular, if Sn=S= NT  the semigroup of all maps from X into itself, then we can define an induced structure on the 
adjoined zero semigroup NT , where z is a zero element, i.e., for any f  NT , we have

. . . .Nz z f z z f z f= = = ∀ ∈T

The induced structure on { }N z∪T  is defined as follows:

if and in ,
.

N N

N

fg f g
f o g

z if one of f and g is not in
∈

= 


T T
T

Then, the homomorphism M can be extended into a map M  of the semigroup { }NS z= ∪T into Dn, i.e., M : S →Dn is 
defined by

0 *( ) 0 ,

( ) ( ) .
n n nM z M D

M z M f f S

= = ∈

= ∀ ∈

Therefore,

( ) ( ) ( ) ( ) ( ) ,af nM af M M af M af aM f aM f D= = = = = ∈

And

( )( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) . ( ) ( ) ( ). ( ).
f g f g

fg f g

M f g M f g A A A M f M g M f M g

M fg M fg A A A M f M g M f M g
++ = + = = + = + = +

= = = = =

Thus, M becomes a representation on S.

Representation of a semigroup of linear transformations in green’s

Relations

Two things that can be associated with an element α 1α αοα −∏ =  are as follows:

1. the range Xα of α, and

2. the partition 1α αοα −∏ =  of X by ( , )x y x y Xα∏ ∈ if xα=yα which defines an equivalence relation on X.

Let α∏  be the natural mapping of X upon the set /X α∏  of equivalence classes of X mod α∏ . Then, x xα α∏ → be-
comes a one-to-one mapping of /X α∏  upon Xα. It follows that X Xα α∏ = , and this cardinal number is called the rank of α.

Remark

The Ex.2.2.6 in [4] can be rewritten as follows,

Let F be a field and V be a vector space over F. By the dimension dimV of we mean the cardinal number of a basis of V over 
F. Let ( )VL  be the multiplicative semigroup (i.e., under the operation of composition of maps) of all linear transformations of V 
with each element t of L(V) we associate two subspaces of V that are given as follows:

1. the range Vτ  of τ , consisting of all (x) τ  with x  V and,

2. the null space Nτ  of τ , consisting of all y in V such that (y)τ  = 0. 

(a) Let τ   ( )VL , and W be a subspace of V, complementary to the null space Nτ  , so that V =
τ

.

Then, τ  induces a non-singular matrix A.

Hence, dim(V=Nτ )=dim(W)=dim(Vt); is called rank of t. The difference or quotient space of V modulo Nτ  is denoted by V-N
τ  or by V/N ( )vTL . If dimV is finite, this notation of rank is the usual one as for the matrix A, since VA is the row-space of A. Also NA is 
the orthogonal complement of the column-space of A.
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(b) Two elements of the space ( )vTL  are ( )−RL - equivalent if and only if they have the same range (null-space).

(c) If N and W are subspaces of V such that dim(V/Nτ )=dimW, then there exists at least one element ρ of 1τ such that 
N = Nρ and W =Vρ.

(d) Two elements 1τ  and ( )2 Vτ ∈ L are D -equivalent if and only if rank ( 2τ )=rank ( 2τ ).

(e) The Th. 2.9 holds for ( )VL  instead of XT  if we replace “subset Y of X” by “the subspace W of V”, vT
by dim W, “parti-

tion vT  of X” by “subspace N of V ”, and /X ∏  by dim(V/N).

Linear representation of a full transformation semigroup over a finite field 

Definition

Let V be a vector space over the field F(=C) the complex numbers and let the finite subset {ei}i
n=1 of V be a basis for V, i.e., 

dimV=n, let vT  denote the full transformation semigroup over V. The space ( )vTL  denotes the space of all linear transformations 
on V. If a is in ( )vTL , a linear transformations, then, each a:V→V is represented by a square matrix (aij) of order n. The coefficients 
aij are complex numbers for all i and j=1,…,n and are obtained by

( )
1

n

j ij i
i

a e a e
=

=∑

where a can be identified as a morphism which is equivalent to saying that det(a)=det(aij) ≠ 0. The linear space ( )sTL  of 
full transformation semigroup can be identified with the semigroup of all transformations of degree n.

A representation ф : S → ( )sTL  is faithfull if and only if ф is one-to-one homomorphism. A representation ф of a semigroup 
S, of degree n over the field F, we mean a homomorphism of S into the semigroup ( )nF

TL  of all linear transformation over Fn, 
where Fn ≅  F[S], the vector space is generated by S over the field F. Thus, to each element s of S there corresponds a linear trans-
formation ф(s)  ( ) ( ) ( )   for all ,  .st s t s t S= Φ ∈Φ Φ  such that

( ) ( ) ( )   for all ,  .st s t s t S= Φ ∈Φ Φ

We denote the algebra of all linear transformations over the n-dimensional vector space Fn over the field F by ( )nF
F T . Obvi-

ously, ( )nF
F T appears as a subspace of ( )nF

TL .

If ф is an isomorphism of S upon a subsemigroup of n
q F qF   T ; then ф is said to be faithfull. We shall determine all the repre-

sentations of various classes of finite semigroups over a finite field Fq. If S is a finite semigroup, then there is a one-to-one corre-
spondence between a representation of S and that of algebra 

n
q F qF   T

 over the finite field Fq. Of course, this correspondence 
preserves the reducation, decomposition and hence the full reducibility hold for such representations of S if and only if n

q F qF   T  
is semisimple that holds if q does not divide the dimFn

q=n, (the dimension of the vector space Fn
q over a finite field Fq. There is 

a necessary and sufficient condition on a finite semigroup S in order that Fq[S] is semisimple. An explicit representation of such 
group is obtained in. They constructed all the irreducible representations of S from those of its principal factors of the full trans-
formation semigroup on a finite set.

If F is algebraically closed, then there are no division algebras over F other than F itself, and in this case Wedderbun’s second 
theorem tells us that every simple algebra ∧  over F is isomorphic with the full transformation semigroup algebra ∧  of degree 
n for some positive integer n. 

Any isomorphism of ∧ upon semigroup ∧  is a representation of∧ , and gives the irreducible representation of∧ . Let ∧  
be an algebra of order n over F, and let ф be a representation of ( )m∧L  of degree r over F, and let m be a positive integer. For each 
element ф(m) of ( )m∧L , construct a transformation ф(m)

i  ( )( )m rF∧L .

such that

if       

( ) ( )

( )( )
1

( ) ( )

.

, ,

r
m m

mi i
i

m m m r
i j

a

F
=

Φ = Φ

Φ Φ ∈ ∧

∑
L

then

The map ф(m) is called the representation of L(Lm) associated with the representation ф of ∧ . The following lemma is due to 
Van der Waerden’s modern algebra.

Lemma

( ) ( ) ( )

, 1

r
m m m

mi mj i j
i j
i j k

a b
=

+ =

Φ = Φ Φ∑
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Let D be division algebra, and let m be a positive integer. The right regular representation ρ of D is an irreducible, and the 
only irreducible representation of the simple algebra ( )mDL  is just the representation ρ(m) of ( )mDL  associated with ρ.

THEOREM 7.3

Let ∧ σ (σ=1,…,c) be the simple components of a semisimple algebra ∧ . By Wedderburn’s second theorem, each ( )mD σσL σ may 
be regarded as a full transformation ( )mD σσL  of some degree mσ over the division algebra ( )σ∧L . Let ρσ be the regular represen-
tation of Dσ and ρσ(mσ) be the representation of ( )σ∧L  associated with ρσ then ρσ(mσ) is the only irreducible representation 
of ρσ. Extending (ρσ)(mσ) to 1

c

r
r

a a
=

= ∑  by defining фσ (a) = (ρσ)(mσ)(a) if 
1

c

r
r

a a
=

= ∑  is the unique expression of the element a of ∧  as a sum of 
elements ar of the ∧ r. Then {ф1 ,…,фc} is the complete set of inequivalent irreducible representations of Dσ . If dσ is the order of
Dσ , then the degree of фσ is dσ.mσ. If F is algebraically closed, each Ds reduces to F and we may regard L as a direct sum of full 
transformation semigroup algebra ∧  over F. The irreducible representation of∧ are then just the projections ofτ upon its vari-
ous components (see Th.7.3 in [4]).

THEOREM 7.4

Let τ  be a linear operator on ∧  with an algebra ∧  of finite order over a field F.

If n > m, then there exists a non-zero linear transformation σ: n m∧ → ∧ such that τ σ = 0. There exists a non-null transfor-
mation : n mγ ∧ → ∧ (over γτ ) such that γτ = 0, for every m > n.

Proof

Let n > m and 1 2τ τ τ= ⊕  with 2τ  an operator on 2τ and 2τ  a linear transformation from n m−∧ into 
n m−∧ (over 1τ ). Suppose 

that 1τ is left divisor of zero in ( )m∧L , then there exists σ1 ≠ 0 in ( )m∧L such that 1τ σ1 = 0. We may take σ=(σ1,0). Hence we may 
assume that 1τ is not left divisor of zero in ( )m∧L . By Lemma 5.8, that can be applied to the algebra ( )m∧L , we have that the alge-
bra 1τ contains a left identity element i with respect to which 1τ  has a two-sided inverse ρ1 in 1τ , i.e. ρ1 1τ = 1τ ρ1 = i. We may 
take σ = (-ρ1 

m∧  σ2, σ2), where σ2 is any non-singular linear transformation from m∧ into m∧  over the algebra∧ .

Then,
2τ

since 2τ  σ2  ( )m∧L
 and i is the identity element in ( )m∧L .

One can similarly prove that, if m > n, then there exists a non-null transformation : n mγ ∧ → ∧ such that 0γτ =
Representation of a full transformation semigroup over a finite field

Let θ be a root of some irreducible polynomial of degree m over a finite field Fq(or the Galois field GF(q)), then the set {1, θ, 
θ2….,θm-1} becomes a basis for the vector space Fm

q over Fq and is called a polynomial basis for Fm
q. The dimension of the vector 

space Fq
m over Fq is m. Let θ  Fq

m such that the set

{ } { }2 1

0 , , ,.....,
i mq q q qi mθ θ θ θ θ

−

= ≤ =B <

form a basis for Fq
m. Let a = 

2 1

0 1 2 1...
mq q q

ma a a aα θ θ θ θ
−

−= + + + + so that a be represented by the vector (a0,a1,a2,…,am-1) and 
let αq be represented by the shifted vector (am-1,a0,a1,…,am-2). The normal basis exists for any extension field of Fq.

Consider the vector space V = Fq
m over Fq (where q is a prime), and let 

{ }2 1

, , ,.....,
mq q qθ θ θ θ
−

=B
 be a basis for V. Let TB 

be the full transformation semigroup upon the basis B. Then 
TB =mm.

Since 
1

0 1 2 1...
mq q q

ma a a aα θ θ θ θ
−

−= + + + +  is an element of V =Fqm as described above. Then the element σ  IB  
can be defined by 2 12 1( ) , ( ) ,...., ( )

mq q m qσ α θ σ α θ σ α θ
−−= = = . If 0 1 2 1( , , ,..., )ma a a a −  V, then σ(a)  IB , where

0 1 2 1

1 0 1 2 2

( ) ( , , ,..., )
( , , , ,..., ),

m

m m

a a a a
a a a a a

σ α σ −

− −

=
=

i.e., 0 1 2 1

1 0 1 2

, , ,...,
( )

, , ,...,
m

m m

a a a a
a a a a

σ α σ −

− −

 
= ∈ 

 
TB

It is obvious to say that Fq
m = Fm

q. S is a full transformation semigroup over V* with a dual basis B  = {σ0 = 1,σ, σ2,.., σ
m-1} of 

V* then there exists a mapping фa : IB →S which becomes an isomorphism.

Since IB  is a finite full transformation semigroup on the basis B of V over the finite field Fq. Therefore Fq[IB ] becomes 
an algebra of IB over Fq. Then, there is a natural one-to-one correspondence between the representation of TB over Fq and 
those of Fq[IB ], which preserves equivalence, reduction and decomposition into irreducible constituents.
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Thus the representations of IB  over Fq is transferred to the algebra Fq[IB ]. If Fq[IB ] is semisimple, then by the 
main representation theorem[4] holds for semisimple algebra Fq[IB ]. Every representation of Fq[IB ] and hence every 
representation of TB is full reducible into irreducible one.

Let Fq be a finite field, and B be a basis for Fm
q , where (m,q) = 1. (i.e., m,q are relatively prime).

Then, we have the following interpretation of the Maschke’s theorem regarding the algebra Fq[IB ] over the finite field Fq.

THEOREM 8.1

Let S = B  be a finite full transformation semigroup over basis B  of IB of order mm.

Then, the semigroup algebra Fq[IB ] over Fq is semisimple if and only if the characteristic q of Fq does not divides the 
order mm of the full transformation semigroup ∧ .

Let ∧  be an algebra of order r over the vector space V = Fq
m, and let n be another positive integer different from m. Denote 

by ∧  the full matrix algebra of all nn matrices over ∧ , with the additions and multiplication of matrices, and of the multipli-
cation of matrix by a scalar in Fqm. Then, the algebra ∧  is of order rn2 over Fq

m. In particular, (Fq
m)n will denote the full matrix 

algebra of degree n over Fqm.

An algebra L over a field F is called division algebra if ∧ /0is a group under multiplication. A result regarding the existence 
of an isomorphism between a full matrix algebra and the space of all the linear transformations over the vector space Fq

m , is as 
follows.

THEOREM 8.2

Let Fq
m be a vector space over a finite field Fq. Then, there is an isomorphism from the space of full matrix algebra (Fq)m to the 

space ( )m
qFL  of all the linear transformations on Fq

m.

Proof

The set of all m−dimensional vector space (1m matrices) over Fq is an m−dimensional vector space Fq
m over Fq. The natural 

basis of Fq
m consists of the m vectors v1 = θ, v2 = θq, v3 =θq2 ,…,vm = θqm-1, where vi has the identity element 1 of Fq for its ith com-

ponent, and has 0 for the remaining components.

If A  (Fq)m, then the transformation t : Fq
m →Fq

m given by τ (vi) = Avi is a linear transformation t of Fq
m into itself and the 

mapping ф: (Fq)m → ( )m
qFL  is an isomorphism of (Fq)m upon the algebra ( )m

qFL  of all linear transformations of Fqm into itself. 
The ith row of A is the vector τ (vi).

Conversely, if Fq
m is any m−dimensional vector space, and we choose a basis {v1,v2,…,vm} of Fq

m, then each linear transforma-
tion t of Fq

m determines a matrix A = (αij) from the expression
τ

for the m vectors τ (vi); (1≤ i ≤m) as linear combination of the basis vectors. Then, the mapping ψ : ( )m
qFL →(Fq)

m be-
comes an isomorphism of ( )m

qFL upon (Fq)
m.

CONCLUSION
A combinatorial result about the rank of a representation of the full transformation semigroup is obtained. It seems that for 

any homomorphism between the set of single-valued maps and the set of all nn matrices over a field F becomes a representa-
tion when the set of single valued maps is replaced by a full transformation semigroup adjoined with a zero element z. There is 
a one-one correspondence between the set of all representations of some finite semigroup S and those of the algebra of a full 
transformation semigroup over a finite dimensional vector space over a finite field. Consequently, we observed an isomorphism 
between the full matrix algebra (Fq)

m and the set of all linear transformations on Fq
m is obtained.
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