

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 3, March 2014

Copyright to IJIRCCE www.ijircce.com 3444

A Micro Partitioning Technique in MapReduce for
Massive Data Analysis

Nandhini.C, Premadevi.P
PG Scholar, Dept. of CSE, Angel College of Engg and Tech, Tiruppur, Tamil Nadu

Assistant Professor, Dept. of CSE, Angel College of Engg and Tech, Tiruppur, Tamil Nadu

ABSTRACT: Over the past years, large amounts of structured and unstructured data are being collected from various
sources. These huge amounts of data are difficult to handle by a single machine which requires the work to be
distributed across large number of computers. Hadoop is one such distributed framework which process data in
distributed manner by using Mapreduce programming model. In order for Mapreduce to work, it has to divide the
workload across the machines in the cluster. The performance of Mapreduce depends on how evenly it distributes the
workload to the machines without skew and avoids executing job in a poorly running node called straggler. The
workload distribution depends on the algorithm that partitions the data. To overcome the problem from skew, an
efficient partitioning technique is proposed. The proposed algorithm improves load balancing as well as reduces the
memory requirements. Slow running nodes degrade the performance of Mapreduce job. To overcome this problem, a
technique called micro partitioning is used that divide the tasks into smaller tasks greater than the number of reducers
and are assigned to reducers. Running many small tasks lessens the impact of stragglers, since work that would have
been scheduled on slow nodes is only small which can be performed by other idle workers.

 Keywords: Hadoop; MapReduce; TeraSort; Partitioning; Skew; Straggler

I. INTRODUCTION
There is a massive improvement in the computer technology which leads to the development of large new devices.

Computing devices have several uses and are necessary for businesses, scientists, governments, engineers. The
common thing among all computing devices is the potential to generate data. The data may be a person posting to a
social media site, a sensor gathering the climate data, a bank or a credit card transaction.

The popularity of the Internet along with a sharp increase in the network bandwidth available to users has resulted in
the generation of huge amounts of data. However, the amount of data generated can often be too large for a single
computer to process in a reasonable amount of time. Furthermore, the data itself may be too big to store on a single
machine. So for reduce the time it takes to process the data, and to have the minimum storage space to store the data, it
is necessary to write programs that can execute on two or more computers and distribute the workload among them.
While abstractly the computation to perform may be simple, historically the implementation has been difficult.

To address the above issues, Google developed the Google File System (GFS), a distributed file system architecture
model for large-scale data processing and created the MapReduce programming model. The MapReduce programming
model is a programming abstraction that hides the underlying complexity of distributed data processing. Therefore the
difficulty of parallelizing computation, distribute data and handle faults no long become an issue. Hadoop is an open
source software implementation of MapReduce, written in Java, originally developed by Yahoo. Since its origin,
Hadoop has continued to grow in popularity amongst businesses and researchers.

This work focuses on Hadoop and investigates the load balancing mechanism and straggler problem in Hadoop’s
MapReduce framework. This is an important area of research because load balancing and straggler problem are the key
issues which degrade the performance of Mapreduce job. Moreover this report provides a method to reduce the
required memory footprint. Using the proposed methods there will be an improved computation time for MapReduce
when these methods are executed on small or medium sized cluster of computers.

The rest of the work is organized as follows: Section 2 deals with the background of MapReduce framework and the
motivation for this work. Section 3 gives the problem definition. Section 4 explains the working scenario of Xtrie and
Etrie. Section 5 presents the Micro partitioning Technique for MapReduce. Section 6 presents the experimental results
Section 7 concludes the report.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 3, March 2014

Copyright to IJIRCCE www.ijircce.com 3445

II. RELATED WORK
The MapReduce is a programming model developed as a way for programs to cope with large amounts of data. This

goal achieved by distributing the workload across multiple computers and then working on the data in parallel. From
the programmers perspective MapReduce is a relatively easy way to create distributed applications compared to
traditional methods. Hadoop is the open source implementation of Mapreduce programming model. Mapreduce works
along with a distributed file system called Hadoop Distributed File System (HDFS) in Hadoop. Both Mapreduce and
HDFS in hadoop are derived from the Google’s Mapreduce and Google File System.

Ghemawat et al [2] presented a File System called Google File System (GFS) which was developed at Google to
meet the rapidly growing demands for processing their data. This file system is widely used in Google for storing large
data sets. Like other distributed file system, GFS provides high performance, availability,reliability, and scalability. A
GFS cluster consists of a single master and multiple chunk servers and is accessed by multiple clients. The master node
maintains the file system metadata. Each chunk server contains the storage of chunks which forms the part of the file.
These chunks are replicated across multiple machines. The master periodically communicates with the chunk server
with the help of heartbeat messages. Chunk replication allows us to tolerate chunk server failures. This File System is
taken as the base for developing the file system in Hadoop called HDFS.

Dean et al [1] proposed a framework for processing data in distributed manner called MapReduce. MapReduce is the
model for processing and generating large data sets. Programs are automatically parallelized and executed on a large
cluster of computers. The run-time system takes care of the details of partitioning the input file, assigning the
program’s execution across a set of machines, handling machine crashes and managing the required inter-machine
communication. Hash partitioning is the default partitioning technique used in MapReduce for dividing the load among
the reducers. This allows programmers without any experience with parallel and distributed systems to easily utilize the
resources of a large distributed system.

Malley [4] proposed sorting terabytes of strings using Hadoop implemented by Apache. Hadoop is an open source
software framework for executing tasks in parallel. Hadoop broke the world record by sorting tera bytes of data using
the TeraSort method. TeraSort was able to do this sorting process by distributing the workload evenly among the
machines. It does this by using custom partitioner. It uses two-level trie to partition the data. Trie is a tree based data
structure for storing strings. Hadoop wrote 3 applications for terabyte sort such as TeraGen, TeraSort, TeraValidate.

Zaharia et al [6] presented an algorithm for improving MapReduce performance in heterogeneous environments. A
key benefit of MapReduce is that it automatically dealing with failures, beating the complexity of fault-tolerance from
the programmer. If a node fails, MapReduce reruns its tasks on a different machine. More importantly, if a node is
present but is performing unsuccessfully, a condition that we call a straggler, MapReduce runs a speculative copy of its
task on another machine to finish the computation faster. Hadoop’s scheduler starts speculative tasks based on a simple
heuristic comparing each task’s progress to the average progress. Although this program works well in homogeneous
environments, it is difficult to differentiate slowly running nodes and the stragglers in heterogeneous environments. To
overcome this problem, the author proposed an algorithm called LATE algorithm to address the node heterogeneity.
The proposed LATE algorithm reduces Hadoop’s response time.

Shafer et al [5] presented a distributed file system called HDFS. This is the file system used by Hadoop which is the
clone of GFS. All files in the HDFS follow the write-once, read-many access rule. In HDFS each file is divided into
blocks of default size 64MB and are stored in each node. Each block is replicated across multiple nodes for
redundancy. Default replication factor in HDFS is 3 which can even set manually if required. The HDFS consists of
two main components namely: 1.Namenode 2.Datanode.The namenode is the master node which maintains the
metadata for all the files and directories. Namenode knows the datanodes on which all the blocks for a given file are
located. The Datanode is the slave node where the actual data is residing. The datanode sends heartbeat message to
namenode every 3seconds to report its status.

Gufler et al [3] addressed the Data Skew problem in MapReduce. The author proposed how to efficiently process
MapReduce jobs with complex reducer tasks over skewed data. For this purpose two load balancing approaches are
proposed namely, fine partitioning and dynamic fragmentation. Fine partitioning splits the input data into a fixed
number of partitions. The number of partitions is larger than the number of reducers, and the goal is to distribute the
partitions such that the execution times for all reducers are similar. In dynamic fragmentation, expensive partitions are
split locally by each mapper while they are created, and tuples are replicated if necessary. As a result, the cost of the
partitions is more uniform and a good load balancing is easier to achieve for highly skewed distributions.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 3, March 2014

Copyright to IJIRCCE www.ijircce.com 3446

III. PROBLEM DEFINITION
The tremendous growth in the computer networks enlarge the network bandwidth available to users has resulted in

the generation of huge amounts of data. For a single computer the amount of data generated is too large so that the
computation of the data takes more time and also increases the storage space. In order to reduce the computation time
and decreases the storage space the workload is distributed on two or more computers.

Hadoop sorts terabyte of data called Terasort which uses two-level Trie to partition the data. A Trie is a tree-based
data structure for storing strings. In a two-level Trie only first two characters of a string is considered during the
partitioning phase. This reduces the effectiveness of the load balancing in TeraSort method. Another problem which
degrades performance of Mapreduce job is the slow running node (straggler). A node is available but performing
slowly reduces the effectiveness of the Mapreduce job. So it is necessary to have a technique which addresses the
problem of Data Skew and Straggler.

IV. XTRIE AND ETRIE
Hadoop sorts terabyte of data using Terasort method. Terasort uses trie to partition the data among the reducers. A

trie is a tree based data structure used for storing strings. In terasort only two-level trie is used which considers only
first two characters in the string. This two-level trie is build using cut-point algorithm. The cut-points are obtained by
dividing the total number of strings to be inserted in trie by number of reducers. Using cut-points strings are divided
among the reducers.

However without the knowing the number of strings in each prefix two-level trie leads to load imbalance among the
reducers. In order to overcome the load imbalance problem faced in using two-level Trie to partition the data, a
technique called Xtrie is proposed to partition the data. In this for each word in the trie it maintains the counter value.
Consider the example set of keys, {“act”, “acid”, “add”, “adult”, “born”, “good”, “grip”, “grow”, “peal”, “pearl”,
“pedal”, “soft”, “stork”, “storm”}.

Fig. 1. Strings stored in the Trie

The above strings are stored in the trie as in Figure 1.By using two level trie the above set is reduced to

{“ac”, “ad”, “bo”, “go”, “gr”, “pe”, “so”, “st”}.
Consider there are 4 reducers and the above set is divided into 4 partitions. Each partition is Figure 1.Strings stored

in the trie send to one reducer. Thus,
Reducer-1 process keys starting with {“ac”, “ad”}.Total:4 keys
Reducer-2 process keys starting with {“bo”, “go”}.Total:2 keys
Reducer-3 process keys starting with {“gr”, “pe”}.Total:5 keys
Reducer-4 process keys starting with {“so”, “st”}.Total:3 keys

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 3, March 2014

Copyright to IJIRCCE www.ijircce.com 3447

This result in workload imbalance among the reducers.To overcomes the above problem, in Xtrie it uses counter for
each key value. Using counter, partitioner can distribute the total number of keys among the reducers evenly. This Xtrie
working is explained using the Table 1. In the table the partition is made by considering the number of occurrences of
each string. So strings with prefix ac and ad goes to partition 1, strings with prefix bo, go and gr goes to partition 2,
strings with prefix pe and so goes to partition 3 and finally the string with prefix st goes to partition 4.

The formula for calculating the TrieCode is shown in Equation (1) below which is used as an index to the array.

 TrieCode =
1 2 0

1 1256 256 ... 256n n
n nW W W

 =

1

1
256

TotalWord
n

n
n

W

 (1)

The trie is represented by using array. Each node in the trie will contain a maximum of 256 children. It is not
possible to have all the 256 children for a single node. This problem will make the trie to occupy lots of memory
space.

To reduce the memory requirements of trie, an algorithm called ReMap algorithm is used which reduces the 256

characters on ASCII to 64 elements as required by Etrie method. Using less memory allows deeper tries to be built.
Deeper tries also provides the chance of distributing keys evenly among reducers.

This problem can be overcome using deeper tries. By using deeper tries, the length of the prefix can be increased.
This increases the number of prefix and reduces the number of keys per prefix. Using this even distribution of keys
among the reducers can be created. The above set of keys using three-level is represented using prefix {“gra”, “gre”,
“gri”, “gro”, “gru”, “gul”} thus dividing the 8 keys represented by prefix “gr” into five smaller categories.\

V. MICRO PARTITIONING TECHNIQUE FOR MAPREDDUCE
A major benefit of MapReduce is that it automatically handles failures, hiding the complexity of fault-tolerance from

the programmer. If a node crashes, MapReduce re-runs its tasks on a different machine. More importantly if a node is
available but is performing poorly, a condition called straggler, MapReduce runs a speculative copy of its task or
backup task on another machine to finish the computation faster. Without the mechanism of speculative execution, a
job would be as slow as the misbehaving task. Stragglers can be caused by hardware failures, transient software issues,
or clusters composed of a heterogeneous mix of hardware.

Prefix Keys Trie

code
Count Partition

ac act 0X6163 2
1 acid

ad add 0X6164 2
adult

bo born 0X626f 1
2 go good 0X676f 1

gr grip 0X6772 2
grow

pe

peal
0X7065

3

3 pearl

pedal
so soft 0X736f 1
st stork 0X7374 2 4

storm

Table 1. Xtrie Partitioner using Two-Level Trie
Straggler is one the common performance issue in Mapreduce system. Stragglers can impact job performance

because a job’s completion time is determined by the completion time of its final task. Several techniques have been

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 3, March 2014

Copyright to IJIRCCE www.ijircce.com 3448

developed to address stragglers. Here a new approach called micropartitioning is used for avoiding skew and stragglers
during the reduce phase.

The key technique is to run a large number of reduce tasks, splitting the map output into many more partitions than
reduce machines in order to produce smaller tasks. These tasks are assigned to reduce machines as workers become
idle, allowing the task scheduler to dynamically mitigate skew and stragglers. Running many small tasks lessens the
impact of stragglers, since work that would have been scheduled on slow nodes is only small which can now be
performed by other idle workers. By assigning smaller units of work, jobs can derive benefit from slower node.

The procedure for implementing the micro partitioning technique is as follows:
Step 1: Take the input samples
Step 2: Store the input samples in trie
Step 3: Build the two-level trie
Step 4: Count the occurrence of each prefix
Step 5: Using cut-point algorithm determine the cut-points (split points)
Step 6: Split points are obtained by dividing the sum of counter value by number of partitions+1
Cut points = sum of counters/number of partitions+ 1
Step 7: Using cut points send the keys to appropriate reducers
 if (key<cutpoint1)
 Send key to reducer 1
 else if (key>=cut-point1&&key<cut-point2)
 Send key to reducer2
 else if (key>=cut-point2&&key<cut-point3)
 Send key to reducer3
 else
 Send to the finished reducer
Step 8: Determine if there is any slow running node by comparing the performance of each node with other
Step 9: If there is any such node move the data that is processing on that node to the free node.

VI. EXPERIMENTAL PROCEDURE
 The experiment is conducted by using hadoop-1.2.1.The system requirements are Pentium Dual-core CPU, 2GB

RAM, 50GB hard disk, java version 1.6 or any other versions above version 6, Cygwin and Windows Xp.
Hadoop is the open source implementation of Mapreduce. Many versions of Hadoop are available. The Hadoop

version 1.2.1 is one of the latest releases and is considered as the stable one.

VII. RESULT

Fig.2. Time Complexity Comparison of Trie and Micro partitioner.

0
1
2
3
4
5
6
7
8

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

Ti
m

en
 ta

ke
n(

se
co

nd
s)

Samples(K)

Trie

Micropartitioner

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 3, March 2014

Copyright to IJIRCCE www.ijircce.com 3449

The performance of the proposed work is evaluated using the given experimental setup. It is then compared with the
existing techniques like trie to show that the performance of the micro partitioning technique has good load balancing
among the reducers and also it reduces the impact of stragglers in Mapreduce framework. The figure 2 shows the time
complexity comparison of Trie and Micro partitioner.

VIII. CONCLUSION AND FUTURE WORK
 Hadoop is the distributed processing environment which is used for processing huge volume of data. It is the

partitioning of the data which determines the workload of the reducers. In order to overcome the problem of skew, the
data should be partitioned efficiently among the reducers. If the data are partitioned equally among the nodes then the
execution time for the overall Mapreduce job is decreased. The proposed techniques can be used to efficiently mitigate
the problem of data skew in reducer and thereby decreasing the processing time of Mapreduce job.

Another issue which degrades the performance of Mapreduce job is the straggler. To overcome the straggler problem
the output from mappers are divided into smaller tasks larger than the number of reducers and are assigned to reducers
in “just-in-time” fashion. This technique is called micro partitioning. Using this technique the problem of both skew
and straggler can be overcomed.

REFERENCES.

1. J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, CommunACM 51:107–113, (2008).
2. S. Ghemawat, H. Gobioff, S-T Leung, “The Google file system”, Proceedings of the 19th ACM symposium on operating systems

principles (SOSP), (2003).
3. B. Gufler, N. Augsten, A. Reiser and A. Kemper, “Handling Data skew in Mapreduce”, Proceedings of the international conference on

Cloud Computing and Services Science(CLOSER), pp. 574-582, (2011).
4. O. O’Malley , “TeraByte sort on Apache Hadoop”, (2008).
5. J. Shafer, S. Rixner, AL. Cox,”The hadoop distributed filesystem: balancing portability and performance”, Proceedings of the IEEE

international symposium on performance analysis of system and software (ISPASS), p 123, (2010).
6. M. Zaharia, A. Konwinski, A. Joseph, R. Katz, I. Stoica, “Improving MapReduce Performance in Heterogeneous Environments”, 8th

USENIX Symposium on Operating Systems Design and Implementation, pp 29-42,(2008).
7. Hadoop, http://hadoop.apache.org/core

BIOGRAPHY
C.Nandhini pursuing M.E., Computer Science and Engineering in Anna University, Chennai. She did her B.E.,
Computer Science and Engineering in Anna University of Technology, Coimbatore. She is a member of MISTE,
IAENG. Her area of interest is Data Mining and Big data. She has published a paper in journal and presented 3 papers
in National Conferences and attended various seminars and workshops to improve her knowledge in various domains.

P.Premadevi working as Assistant Professor in Angel College of Engineering and Technology, Tiruppur. She did her
M.E., Computer Science and Engineering in Anna University of Technology, Coimbatore. . She did her B.E.,
Computer Science and Engineering in Anna University, Chennai. She is a member ISTE, IAENG. Her area of interest
is Database, Data Mining and Big data. She has published 4 papers in various journals and presented 5 papers in
National and International conferences and attended many workshops, seminars and FDP.

