
Volume 1, No. 5, December 2010 

Journal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer Science    

RESEARCH PAPER 

Available Online at www.jgrcs.info 

�

© JGRCS 2010, All Rights Reserved   54 

A NEW METHOD FOR EMBEDDING DATA WITHIN AN IMAGE 

Prof. Samir Kumar Bandyopadhyay*
1
, Biswajita Datta

2
, Debjit Chakrabarty

3
,Aditi Majumdar

3
, Srimanti Bhowmick

3
 

and Nilanjana Ghosh
3
 

1Dept. of Computer Sc. & Engineering,  

University of Calcutta, Kolkata, India  

e-mail:skb1@vsnl.com 
2Lecturer, Department of Computer Sc. & Engineering, 

St. Thomas College of Engineering and Technology 

Kolkata, India 
3Students, Department of Information Technology,  

St. Thomas College of Engineering and Technology  

Kolkata, India 

 

Abstract: The growth of high speed computer networks and the Internet, in particular, has increased the ease of Information Communication. 

The cause for the development is also of the apprehension - use of digital formatted data. In comparison with Analog media, Digital media offers 

several distinct advantages such as high quality, easy editing, high fidelity copying, compression etc. But this type advancement in the field of 

data communication in other sense has hiked the fear of getting the data snooped at the time of sending it from the sender to the receiver.   

Information Security is becoming an inseparable part of Data Communication. In order to address this Information Security, Steganography 

plays an important role. Steganography is the art and science of writing hidden messages in such a way that no one apart from the sender and 

intended recipient even realizes there is a hidden message. This paper proposed a new method for embedding data within an image so that the 

image will look unchanged to human visual systems. 

 

Keywords: Network, image, security, encryption, hiding, and HIV. 

 
INTRODUCTION 

Steganography is the art of covered or hidden writing [1]. 

The purpose of steganography is covert communication to 

hide a message from a third party. Steganography comes 

from the Greek words Steganós (Covered) and Graptos 

(Writing). The origin of steganography is biological and 

physiological. The term “steganography” came into use in 

1500’s after the appearance of Trithemius’ book on the 

subject “Steganographia”. A short overview in this field can 

be divided into three parts and they are Past, Present and 

Future [2]. 

Steganography in the modern day sense of the word usually 

refers to information or a file that has been concealed inside 

a digital Picture, Video or Audio file. What Steganography 

essentially does is exploit human perception; human senses 

are not trained to look for files that have information hidden 

inside of them. Generally, in steganography, the actual 

information is not maintained in its original format and 

thereby it is converted into an alternative equivalent 

multimedia file like image, video or audio which in turn is 

being hidden within another object. This apparent message 

(known as cover text in usual terms) is sent through the 

network to the recipient, where the actual message is 

separated from it. 

The majority of today’s steganographic systems uses 

multimedia objects like image, audio, video etc. as cover 

media because people often transmit digital pictures over 

email and other Internet communication [3]. In modern 

approach, depending on the nature of cover object, 

steganography can be divided into five types: 

• Text Steganography 

• Image Steganography 

• Audio Steganography 

• Video Steganography 

• Protocol Steganography 

So, in the modern age so many steganographic techniques 

have been designed which works with the above concerned 

objects. More often in today’s security advancement, we 

sometimes come across certain cases in which a 

combination of Cryptography and Steganography are used 

to achieve data privacy over secrecy. In this paper, we 

proposed a new method for embedding data within an image 

so that the image will look unchanged to human visual 

systems (HVS). 

The word “Steganography” technically means “covered or 

hidden writing”. Its ancient origins can be traced back to 

440 BC. Although the term steganography was only coined 

at the end of the 15th century, the use of steganography dates 

back several millennia. In ancient times, messages were 



Samir Kumar Bandyopadhyay et al, Journal of Global Research in Computer Science, 1(5),December 2010, 54-61 

© JGRCS 2010, All Rights Reserved   55 

hidden on the back of wax writing tables, written on the 

stomachs of rabbits, or tattooed on the scalp of slaves. 

In today’s world, we often listen a popular term “Hacking”. 

Hacking is nothing but an unauthorized access of data which 

can be collected at the time of data transmission. With 

respect to steganography this problem is often taken as 

Steganalysis. 

Information can be hidden inside a multimedia object using 

many suitable techniques. As a cover object, we can select 

image, audio or video file. Depending on the type of the 

cover object, definite and appropriate technique is followed 

in order to obtain security. 

Since everyone can read, encoding text in neutral sentences 

is doubtfully effective. But taking the first letter of each 

word of the previous sentence, you will see that it is possible 

and not very difficult. Hiding information in plain text can 

be done in many different ways [4]. 

Many techniques involve the modification of the layout of a 

text, rules like using every n-th character or the altering of 

the amount of white space after lines or between words [5]. 

The last technique was successfully used in practice and 

even after a text has been printed and copied on paper for 

ten times, the secret message could still be retrieved. 

Another possible way of storing a secret inside a text is 

using a publicly available cover source, a book or a 

newspaper, and using a code which consists for example of 

a combination of a page number, a line number and a 

character number. This way, no information stored inside 

the cover source will lead to the hidden message. 

Discovering it relies solely on gaining knowledge of the 

secret key. 

To hide information, straight message insertion may encode 

every bit of information in the image or selectively embed 

the message in “noisy” areas that draw less attention—those 

areas where there is a great deal of natural colour variation. 

The message may also be scattered randomly throughout the 

image. A number of ways exist to hide information in digital 

media. Common approaches include: 

• Least significant bit insertion 

• Masking and filtering 

• Redundant Pattern Encoding 

• Encrypt and Scatter 

• Algorithms and transformations 

 

Each of these techniques can be applied, with varying 

degrees of success. 

Least significant bit (LSB) insertion is a common and 

simple approach to embed information in an image file. In 

this method the LSB of a byte is replaced with an M’s bit. 

This technique works good for image, audio and video 

steganography. To the human eye, the resulting image will 

look identical to the cover object [1]. 
For example, if we consider image steganography then the 

letter A can be hidden in three pixels (assuming no 

compression). The original raster data for 3 pixels (9 bytes) 

may be 

 

(00100111 11101001 11001000) 

(00100111 11001000 11101001) 

(11001000 00100111 11101001) 

 

The binary value for A is 10000001. Inserting the binary 

value for A in the three pixels would result in  

 

(00100111 11101000 11001000) 

(00100110 11001000 11101000) 

(11001000 00100111 11101001) 

 

The underlined bits are the only three actually changed in 

the 8 bytes used. On average, LSB requires that only half the 

bits in an image be changed. You can hide data in the least 

and second least significant bits and still the human eye 

would not be able to discern it. The resultant image for the 

above data insertion and the original cover image are given 

below.

 

 

                                                                                          
                          Fig. 1: The cover image                                                              Fig. 2: The stego-image (after A is inserted)  

                                                        
Masking and filtering techniques are mostly used on 24 bit 

and grey scale images. They hide info in a way similar to 

watermarks on actual paper and are sometimes used as 

digital watermarks. Masking images entails changing the 

luminance of the masked area. The smaller the luminance 

change, the less of a chance that it can be detected [1, 4-5]. 

Patchwork and other similar tools do redundant pattern 

encoding, which is a sort of spread spectrum technique. It 

works by scattering the message throughout the picture. This 

makes the image more resistant to cropping and rotation. 

Smaller secret images work better to increase the 

redundancy embedded in the cover image, and thus make it 

easier to recover if the stego-image is manipulated [1, 4]. 

The Encrypt and Scatter technique tries to emulate white 

noise. It is mostly used in image steganography. White 

Noise Storm is one such program that employs spread 



Samir Kumar Bandyopadhyay et al, Journal of Global Research in Computer Science, 1(5),December 2010, 54-61 

© JGRCS 2010, All Rights Reserved   56 

spectrum and frequency hopping. It does this by scattering 

the message throughout an image on eight channels within a 

random number that is generated by the previous window 

size and data channel. The channels then swap rotate, and 

interlace amongst each other. Each channel represents one 

bit and as a result there are many unaffected bits in each 

channel. This technique is a lot harder to extract a message 

out of than an LSB scheme because to decode   first detect 

that a hidden image exists and extract the bit pattern from 

the file. While that is true for any stego-image you will also 

need the algorithm and stego key to decode the bit pattern, 

both of which are not required to recover a message from 

LSB. Some people prefer this method due to the 

considerable amount of extra effort that someone without 

the algorithm and stego-key would have to go through to 

extract the message. Even though White Noise Storm 

provides extra security against message extraction it is just 

as susceptible as straight LSB to image degradation due to 

image processing [1, 5]. 

LSB modification technique for images does hold good if 

any kind of compression is done on the resultant stego-

image e.g. JPEG, GIF etc [20]. JPEG images use the discrete 

cosine transform to achieve compression. DCT is a lossy 

compression transform because the cosine values cannot be 

calculated exactly, and repeated calculations using limited 

precision numbers introduce rounding errors into the final 

result. Variances between original data values and restored 

data values depend on the method used to calculate DCT [6, 

7, 8]. 

Like LSB our proposed method is efficient instead of that 

it’s not easy to analysis, however, standard LSB is not 

effective in term of the data hidden quantity, all researchers 

agreed the fact that the size of data hidden is a problem in 

that particular area, the other problem that faced there, in 

fact if we try to increase the quantity of data in the image 

there will be a suspect changes which become clear to 

human eyes. Our approach will face a challenge that high 

rate data hidden without affecting the images quality.  

PROPOSED METHOD 

Here our main aim is to hide some information (text) within 

an image. We call the text to be hidden as target text and the 

image under which they are to be hidden as cover image. 

Here we consider 24 bit colour BMP images as cover image. 

Each colour used has a 24-bit RGB value. In such images 

each 24 bits pixel thought of as a collection of 3bytes where 

the first byte (first 8 bits) represents the Gray level of Red 

component, the next byte represents the Gray level of Green 

component and the last byte represents the Gray level of 

Blue component. 

Here we proposed a new method for embedding data within 

an image so that the image will look unchanged to HVS. 

Algorithm for Encoding (hiding) the data 

 

Step 1:  Start 

Step 2:  Read the Cover Image and the target Text massage 

Step 3:  Convert the target massage into upper Case 

Step 4:  Calculate the length of the converted String and 

store it in a variable – STRLEN 

Step 5:  Set L=STRLEN 

Step 6:  Store the value of STRLEN in the first pixel of the 

Cover Image using the function                 

              STOR_LEN (STRLEN, Cover Image) 

Step 7:  For 1 to STRLEN repeat the steps 8 to 13. 

Step 8:  Convert the ASC II value of the individual character 

of the target String into its 7 bit binary equivalent 

Step 9:  Cut the MSB to convert the 7 bit binary into 6 bit 

binary 

Step 10: Use the function M (L) to find out the pixel 

location of the cover image for               

               Embedding the target Massage 

Step 11: Replace two LSB (7th & 8th position from MSB) of 

red green and blue component  

               of the target pixel by sequentially 1st – 2nd, 3rd – 4th 

and 5th – 6th positional bit value  

               from MSB of 6 bit binary. 

Step 12:  L=L+1. 

Step 13:  Restore the bits of the Red, Green and Blue 

component of modified pixel in the cover image. 

Step 14:  Send the stego- image to the receiver. 

Step 15: End 

 

Algorithm for Function STOR_LEN (STRLEN, Cover 

Image) 

 

/* Storing of the length of the message */ 

 

Step 1:  Start 

Step 2:  Convert the value STRLEN into its 8 bit binary 

equivalent. 

Step 3:  Replace three LSBs (6th, 7th & 8th position from 

MSB) of Red & Green component  

              and two LSBs(7th  & 8th position from MSB) of 

Blue component of first pixel by  

              sequentially 1st - 2nd – 3rd, 4th – 5th - 6th & 7th - 8th 

positional bit value from MSB of  

              the 8 bit binary. 

Step 4:  End 

 

Algorithm for Function M (L) 

 

/* Finding the affected pixel location */ 

 

Step 1:  Start  

Step 2:  If L is equal to STRLEN, 

  Put P=L 

              else  

                Put P= (L+(L-1))*L 

Step 3:  Return P 

Step 4:  End 

 

Algorithm for extracting the secret data 

 

Step 1:  Start 

Step 2:  To obtain the length of the target text message from 

the 1st pixel of the image call  

   function RET_LEN(Cover image) and  store the 

length in STRLEN. 

Step 3:  Set L=STRLEN  

Step 4:  For 1 to STRLEN repeat the steps 5 to 10. 

Step 5:  Call the function M (L) to find out the pixel location 

of the stego image where the target text Massage is 

embedded. 



Samir Kumar Bandyopadhyay et al, Journal of Global Research in Computer Science, 1(5),December 2010, 54-61 

© JGRCS 2010, All Rights Reserved   57 

Step 6:  Read two LSBs (7th & 8th position from MSB) of 

Red, Green & Blue components of the modified pixel of the 

stego image. 

Step 7:  Concatenate the retrieved bits according to the order 

Red, Green & Blue to form 6 bit  

   binary (where the collected values of R,G & B 

components are put as 1st -2nd , 3rd –  

              4th & 5th – 6th positional bit value from MSB 6 bit 

binary) 

Step 8:  If the two LSBs (7th & 8th position from MSB) of 

red component be 00 or 01, then  

   Concatenate 1 with 6 bit binary as the MSB bit.  

             else if the two LSBs (7th & 8th position from MSB) 

of red component be 10 or 11,  

              then concatenate 0 with 6 bit binary as the MSB bit.  

              From here we get the 7 bit binary from its 6 bit 

binary. 

Step 9: Convert this 7 bit binary into its equivalent ASC II 

value of the individual character  

              of the target String. 

Step 10: set L=L+1 

Step 11: Concatenate all the characters to obtain target 

message  

Step 12: End 

 

Algorithm for Function RET_LEN (Cover image) 

 

/* Recover the length on receiver side */ 

 

Step1:   Start 

Step 2:  Read the three LSBs (6th , 7th & 8th position from 

MSB) of Red, Green components & two LSBs (7th & 8th 

position from  

              MSB) of Blue component of the modified pixel of 

the stego image. 

 

Step 3:   Concatenate the retrieved bits according to the 

order Red, Green & Blue to form 8 bit binary. 

Step 4:   Convert the binary to its corresponding decimal. 

Step 5:   Return the length of the target text message. 

Step 6:   End 

 

The algorithm executes in the following steps: 

REPLACEMENT OF RGB COMPONENT 

In case of data hiding we replace two LSBs of each of the 

RGB components with the binary value of ASCII of the 

character to be hidden.  

Now we demonstrate our proposed method. Suppose we 

want to hide the character ‘A’ within a pixel of our image. 

Let the gray level value of R, G, B component of that pixel 

of the image be as follows:   

 

  

                              R=255                                 G=218                                             B=154 

Now suppose we want to store ‘A’ in this pixel. The ASCII value of ‘A’ is 65 in binary which is represented in 7 bit as ‘1000001’.  

Our aim is modify the first 2 bit LSB of R, G, B component each of a pixel. To do this i.e. to make 7 bit ASCII into 6 bit we 

discard the MSB ‘1’ of ‘1000001’. Then we get 6 bit as ‘000001’. Then cut these bits in 2- 2- 2 order as follows: 

 

and replace the LSB of the pixel with them. So the final pixel becomes- 

             

                     R=252                                    G=216                                                     B=153 

PIXEL SELECTION 

As we can see the change thus obtained in the pixel value is negligible. But if all the adjacent pixels are changed at the same time 

it may bring about a large change. For this reason instead of changing all the adjacent pixels, we change a certain number of 

selected pixels. The pixels are selected according to the following order-Suppose the starting point is 1, then after the 1st pixel, the 

next pixels changed will be the following order: - 

1                      6                        15                            28                        45 

[(1+0)*1]       [(2+1)*2]         [(3+2)*3]                        [(4+3)*4]                    [(5+4)*5] 

 

But if the length of the string be 21, we start it from 21. Then the affected pixels are selected according to following order: 

21           861           946          .  .  .         3321 

 

                  [(21+20)*21]           [(22+21)*22]                b                                .  .  .  [(41+40)*41] 

 

 

 

��������������������������������������������������� ����������������������������������������� �������������������������������������

����������������������������������������� ��������������������������������������� ��������������������������������������



Samir Kumar Bandyopadhyay et al, Journal of Global Research in Computer Science, 1(5),December 2010, 54-61 

© JGRCS 2010, All Rights Reserved   58 

LENGTH OF STRING STORING 

 

We place it at the 1st pixel of the cover image in general 3-3-2 format according to the following: 

Let the value of R, G, B component of 1st pixel be 

 

 

                      R=250                                    G=210                                                          B=190 

Suppose the length of the string be 21.  The binary value of 21 is ‘00010101’ (8 bits). Cut the bits 3-3-2 format 

 

and replace the R, G, B component of the 1st pixel. So the final Gray level value of R, G, B component of 1st pixel be 

 

              

R=248                                                           G=213                                       B=189 

Decoding Technique 

At the time of decoding we pick the length from 1st pixel according to the 3-3-2 format. Then follow the above series to get the 

modified pixels where the target information is hidden.  

Suppose at a particular pixel of the stego image the Gray level value of R, G, B component be  

 

R=252                                 G=216                                                             B=153 

Collect the 2 LSB bits of each component and concatenate 

them according to the order Red, Green & Blue to get 6 bit 

binary value. Here it becomes ‘000001’ (00 ( R )  00 ( G )  

01 ( B )).  Then we examine 2 LSB bits of R component of 

that particular pixel of the stego image (here it is 00) . If it is 

00 or 01 then we consider MSB as 1 else if it is 10 or 11 

then we consider MSB as 0. 

Here 2 LSB bits of R component is 00 so we concatenate 1 

with the 6 bit binary ‘000001’ and get 7 bit binary as 

‘1000001’. Then convert this 7 bit binary into equivalent 

decimal to get the ASCII (here it is 65), from the ASCII we 

retrieve the embedded textual message (so 65 is converted to 

character ‘A’). 

RESULT & DISCUSSION 

An English message text is written by using the alphabetic 

characters of the English language ((which are 26 letters 

(‘A’ … ‘Z’)) as well as numeric digits (which are 0 to 9). 

Some other special characters are also used to give the 

reader a proper understanding of the message. Here we 

consider only the uppercase alphabetic characters; numeric 

digits and some most commonly used special character for 

the better understanding of target message.  The characters 

consider in this study are given in the following Table I.  

Table -I 

Character 
ASCII 

Code 

Binary 

Character 
ASCII 

Code 

Binary 

Character 
ASCII 

Code 

Binary 

MSB R G B   MSB R G B   MSB R G B   

A 65   1          00     00      01 O 79   1            00     11    11 2 50    0          11   00   10 

B 66   1          00     00      10 P 80   1            01     00    00 3 51    0          11   00   11 

C 67   1          00     00      11 Q 81   1            01    00     01 4 52    0          11   01   00 

D 68   1          00     01      00 R 82   1             01    00    10 5 53    0          11   01   01 

E 69   1          00     01      01 S 83   1             01    00    11 6 54    0          11   01  10 

F 70   1          00     01      10 T 84   1             01    01    00 7 55    0          11   01   11 

G 71   1          00     01      11 U 85   1             01    01    01 8 56    0          11   10   00 

H 72   1          00    10       00 V 86   1             01    01    10 9 57    0          11   10   01 

I 73   1          00     10      01 W 87   1             01    01    11 . 46    0          10   11   10 

J 74   1          00     10      10 X 88   1             01    10    00 , 44    0          10   11   00 

K 75   1          00     10      11 Y 89   1             01    10    01 ? 63    0          11   11   11 

L 76   1          00     11      00 Z 90   1             01    10    10 ! 33    0          10   00   01 

M 77   1          00     11      01 0 48   0             11    00    00 blank 32    0          10   00   00 

��������������������������������������������������� �������������������������������������������������� ���������������������������������������������������

��������������������������������������������������� �������������������������������������������������� ���������������������������������������������������

1    1    1    1    1    1    0    0     1    1    0    1    1     0    0     0 1    0    0    1    1     0    0    1 



Samir Kumar Bandyopadhyay et al, Journal of Global Research in Computer Science, 1(5),December 2010, 54-61 

© JGRCS 2010, All Rights Reserved   59 

N 78   1          00     11      10 1 49   0             11    00    01 - 45    0          10   11   01 

Before going into detailed discussion, at the sender side we choose the information of the target message and a cover image file 

under which the target message is to be hidden. 

Test Case 1: 
                  Cover Image:   lena.bmp                                                                                Stego Image: 

                                                                                                
 

                     Target message:                                                                                            Retrieved message: 
              THIS IS A STEGO IMAGE                                                                          THIS IS A STEGO IMAGE              
 

Test Case 2: 
 

               Cover Image:    lena.jpg                                                                                                Stego Image: 

                                                                                                   
   

                    Target message:                                                                                        Retrieved message: 
 COMMONWEALTH GAMES - 2010 – INDIA                       COMMONWEALTH GAMES - 2010 - INDIA  
 

Test Case 3: 
 

             Cover Image:     cheetah.bmp                                                                               Stego Image: 

                                                                                                        
 

                   Target message:                                                                                              Retrieved message: 
            THIS IS A STEGO IMAGE                                                                             THIS IS A STEGO IMAGE               
 

Test Case 4: 
 

           Cover Image:    dance.jpg                                                                                                Stego Image: 

                                                                                                                          
 

                          Target message:                                                                                                    Retrieved message: 
 COMMONWEALTH GAMES - 2010 – INDIA                                           COMMONWEALTH GAMES - 2010 - INDIA 

 

  For detailed discussion we consider the test case 1. In test 

case 1   

                         Target message:  this is a stego image 

                         Cover image: lena.bmp 

Before embedding process we need to convert the target 

message into upper case. Then we store the length of the 

message in the first pixel using 3-3-2 approach. Then we 

start our approach using our proposed method. 



Samir Kumar Bandyopadhyay et al, Journal of Global Research in Computer Science, 1(5),December 2010, 54-61 

© JGRCS 2010, All Rights Reserved   60 

Now we start our work with “THIS IS A STEGO 

IMAGE”. Then we start our work according to the 

Proposed Method as per the following Table II. 

 

Table II 

 
Character 

Of 

Target 

Message 

 

ASCII 

Of 

Corresponding 

Character 

MSB  Binary 6 bit 

 

 

R   G   B 

Affected 

Pixel 

Number 

Old gray 

level value in 

binary for 

Red  

Changed 

gray level 

value in 

binary for 

Red  

Old gray 

level value 

in binary 

for Green  

Changed 

gray level 

value in 

binary for 

Green  

Old gray 

level value 

in binary 

for Blue 

Changed 

gray level 

value in 

binary for 

Blue  

T 84 1 01  01  00 21 176 177 91 89 60 60 

H 72 1 00  10  00 861 190 188 110 110 75 72 

I 73 1 00  10  01 946 242 240 172 174 120 121 

S 83 1 01  00  11 1035 190 189 106 104 69 71 

Blank 32 0 10  00  00 1128 157 158 82 80 59 56 

I 73 1 00  10  01 1225 159 156 78 78 57 57 

S 83 1 01  00  11 1326 155 153 83 80 59 59 

Blank 32 0 10  00  00 1431 182 182 98 96 70 68 

A 65 1 00  00  01 1540 198 196 114 112 78 77 

Blank 32 0 10  00  00 1653 161 162 84 84 58 56 

S 83 1 01  00  11 1770 157 157 83 80 58 59 

T 84 1 01  01  00 1891 214 213 135 133 102 100 

E 69 1 00  01  01 2016 137 136 76 77 57 57 

G 71 1 00  01  11 2145 144 144 73 73 53 55 

O 79 1 00  11  11 2278 160 160 85 87 62 63 

Blank 32 0 10  00  00 2415 186 186 100 100 65 64 

I 73 1 00  10  01 2556 149 148 79 78 54 53 

M 77 1 00  11  01 2701 160 160 82 83 60 61 

A 65 1 00  00  01 2850 155 152 80 80 57 57 

G 71 1 00  01  11 3003 248 248 185 185 132 135 

E 69 1 00  01  01 3160 142 140 70 69 58 57 

 

According to the same way other test cases hide data within 

the particular cover image. Editing the old gray level value 

for R, G & B component of a selected pixel with intended 

binary values causes a negligible hange in the original cover 

image file that remains almost imperceptible to HVS. 

At the receiving end the data retrieving algorithm work for 

decoding the massage from the cover image as follows. 

First the length of the hidden message is retrieved from the 

first pixel. Now According to the defined series we find out 

the pixel position where the data bits are embedded. Then 

we pick the 2 least significant bits from each of the R, G & 

B component of each pixel and concatenate them to get 6 bit 

binary. Then either 0 or 1 based on 2 least significant bit 

value of red component (0 if they are 11 or 10, 1 if they are 

00 or 01) is added as the MSB to get the 7 bit binary. 

Convert the 7bit to ASCII from which the text can be 

retrieved. 

The whole retrieval process can be depicted thoroughly as 

the test case 1 in the following Table III. 

 

Table III 

 
Affected 

pixel 

number 

 

Gray 

level 

value 

in 

decima

l  for 

Red 

 

Gray 

level 

value in 

binary for 

Red 

Gray level 

value in 

decimal  for 

Green 

 

Gray 

level 

value in 

binary for 

Green 

Gray level 

value in 

decimal  

for Blue 

 

Gray 

level 

value in 

binary for 

Blue 

MSB 

(decide 

based 

on 2 

LSB of 

Red) 

 

Concaten

a-ted 6 bit 

 

Concatena-

ted 7 bit 

 

Correspo

nding 

ASCII 

Correspo

n-ding 

Character 

 

21 177 10110001 89 01011001 60 00111100 1 01  01  00 1010100 84 T 

861 188 10111100 110 01101110 72 01001000 1 00  10  00 1001000 72 H 

946 240 11110000 174 10101110 121 01111001 1 00  10  01 1001001 73 I 

1035 189 10111101 104 01101000 71 01000111 1 01  00  11 1010011 83 S 

1128 158 10011110 80 01010000 56 00111000 0 10  00  00 0100000 32 blank 

1225 156 10011100 78 01001110 57 00111001 1 00  10  01 1001001 73 I 

1326 153 10011001 80 01010000 59 00111011 1 01  00  11 1010011 83 S 

1431 182 10110110 96 01100000 68 01000100 0 10  00  00 0100000 32 blank 

1540 196 11000100 112 01110000 77 01001101 1 00  00  01 1000001 65 A 

1653 162 10100010 84 01010100 56 00111000 0 10  00  00 0100000 32 blank 

1770 157 10011101 80 01010000 59 00111011 1 01  00  11 1010011 83 S 

1891 213 11010101 133 10000101 100 01100100 1 01  01  00 1010100 84 T 

2016 136 10001000 77 01001101 57 00111001 1 00  01  01 1000101 69 E 

2145 144 10010000 73 01001001 55 00110111 1 00  01  11 1000111 71 G 

2278 160 10100000 87 01010111 63 00111111 1 00  11  11 1001111 79 O 



Samir Kumar Bandyopadhyay et al, Journal of Global Research in Computer Science, 1(5),December 2010, 54-61 

© JGRCS 2010, All Rights Reserved   61 

2415 186 10111010 100 01100100 64 01000000 0 10  00  00 0100000 32 blank 

2556 148 10010100 78 01001110 53 00110101 1 00  10  01 1001001 73 I 

2701 160 10100000 83 01010011 61 00111101 1 00  11  01 1001101 77 M 

2850 152 10011000 80 01010000 57 00111001 1 00  00  01 1000001 65 A 

3003 248 11111000 185 10111001 135 10000111 1 00  01  11 1000111 71 G 

3160 140 10001100 69 01000101 57 00111001 1 00  01  01 1000101 69 E 

 

From table II we can see that the changes in R, G, & B are 

so minimal that it cannot affect in human eyes. If we follow 

the column “Affected pixel number” from table II & III we 

see that the size of the cover image is also very small; here 

to store target message of size 21 we require minimum 60 × 

60 sized cover image. From the experimental result we 

found that for the target message of size 50 we require 

minimum 150 × 150 sized cover image. So when we send 

this type of stego image through internet it takes lesser 

bandwidth. 

Here we choose 512 × 512 image for better vision of the 

stego image. But if we choose such types of large cover 

image another option is also open to us. In that case we can 

hide more than one target message in the image. But one 

thing is need to be considered – the size of the second 

message should be greater by 2 × size of the first message, 

the size of the third message should be 2 × size of the 

second message and so on.   

Here we consider only the uppercase alphabetic character 

for interpretation of characters from the stego message at the 

receiver side. Otherwise according to our hidden process 

some of the lower case letters in 6 bit match with 6 bits of 

some mostly used special characters that we consider in this 

study.   

 

CONCLUSIONS 

Any different techniques exist and continue to be developed, 

while the ways of detecting hidden messages also advance 

quickly. Since detection can never give a guarantee of 

finding all hidden information, it can be used together with 

methods of defeating steganography, to minimize the 

chances of hidden communication taking place. Even then, 

perfect steganography, where the secret key will merely 

point out parts of a cover source which form the message, 

will pass undetected, because the cover source contains no 

information about the secret message at all. Here we 

proposed a new method for embedding data within an image 

so that the image will look unchanged to HVS. 

 

REFERENCES 

[1] Johnson, N. F. and Jajodia, S. (1998). Exploring 

steganography: Seeing the unseen. Computer, 31(2):26–

34. 

[2] David Kahn, ”The History of Steganography”, Proc. of 

First Int. Workshop on Information Hiding, 

Cambridge,UK, May30-June1 1996, Lecture notes in 

Computer Science, Vol.1174, Ross Anderson (Ed.), 

pp.1-7.  

[3] B.Pfitzmann, ”Information Hiding Terminology”, Proc. 

of First Int. Workshop on Information Hiding, 

Cambridge, UK, May30-June1, 1996, Lecture notes in 

Computer Science, Vol.1174, Ross Anderson(Ed.), 

pp.347-350. 

[4] F.A.P.Petitcolas, et al.,”Information Hiding – A 

Survey”, Proceedings of the IEEE, Vol.87, No.7, July 

1999, pp.1062-1078. 

[5] Johnson, N. F. and Jajodia, S. (1998). Exploring 

steganography: Seeing the unseen. Computer, 31(2):26–

34. 

[6] Westfeld, A. (2001). F5-a steganographic algorithm: 

High capacity despite better steganalysis. In Proc. 4th 

Int’l Workshop Information Hiding, pages 289–302. 

[7] W. Brown and B.J. Shepherd, Graphics File Formats: 

Reference and Guide, Manning Publications, 

Greenwich, Conn, 1995. 

[8] E. Koch, J. Rindfrey, and J. Zhao, “Copyright 

Protection for Multimedia Data,” Proc. Int’l Conf. 

Digital Media and Electronic Publishing, Leeds, UK 

1994.

[9]  

 


