
ISSN (Online) : 2319 – 8753 
ISSN (Print)    : 2347 - 6710 

 

International Journal of Innovative Research in Science, Engineering and Technology 

An ISO 3297: 2007 Certified Organization,          Volume 3, Special Issue 1, February 2014 

International Conference on Engineering Technology and Science-(ICETS’14) 
 

On 10th & 11th February Organized by 
 

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India 

Copyright to IJIRSET                              www.ijirset.com                                                                 452 

A Partial Critical Path Based Approach for Grid 
Workflow Scheduling 

 
Anagha Sharaf1, Suguna.M2 

PG Scholar, Department of IT, S.N.S College of Technology, Coimbatore, Tamilnadu, India 1 
Associate Professor, Department of IT, S.N.S College of Technology, Coimbatore, Tamilnadu, India 2 

 
ABSTRACT: Grid Computing is a technique in which 
the idle systems in the Network and their CPU cycles can 
be efficiently used by uniting pools of servers, storage 
systems and networks into a single large virtual system 
for resource sharing dynamically. Utility grids are new 
service models in heterogenous distributed systems. 
Utility grids enable users to specify the quality 
requirements they need. The main challenge in grid 
computing is the efficient workflow scheduling. For 
scheduling workflows considering QoS specifications of 
user a metaheuristic algorithm is introduced. The 
algorithm is based on the concept of partial critical path. 
The algorithm includes two phases 1.deadline phase and 
2.Planning phase. User submits deadline and other QoS 
specifications in deadline phase. The cheapest service is 
allotted to tasks inorder to satisfy QoS specifications and 
deadline in planning phase. 
 
Keywords: Utility grids, workflow scheduling, partial 
critical path 
 

I. INTRODUCTION 
 
Grid computing is the technique of flexible and 
coordinated resource sharing. With grid computing users 
could access geographically distributed resources. Grids 
use a layer of middleware to communicate with and 
manipulate heterogeneous hardware and data sets. In 
some fields—astronomy, for example—hardware cannot 
reasonably be moved and is prohibitively expensive to 
replicate on other sites. In other instances, databases 
which are vital for some projects could not be replicated 
and transferred to multiple sites. Grid computing 
overcomes these obstacles. Grid computing enables the 
virtualization of distributed computing resources such as 
processing, network bandwidth, and storage capacity to 
create a single system image, granting users and 
applications seamless access to vast IT capabilities. 
Utility grids are the emerging service provisioning model 
in heterogenous distributed systems. Utility grids make 
the distributed resources available in market for price. 

The main difference between traditional grids and utility 
grid is the Quality of service. Utility grids enable the 
users to negotiate with service providers for the required 
Quality of service and also on the price. 
   
\Workflow could be described as collection of tasks that 
can be processed on distributed resources in a well 
defined manner to achieve specific goal. It is a common 
model for describing wide range of applications in 
distributed systems. Workflows could be represented 
using Directed Acyclic Graph (DAG), where each 
computational task is represented by a node and 
dependency among tasks is represented using the edges. 
 

A metaheuristic QoS based workflow 
scheduling algorithm called partial critical path 
algorithm is introduced. The performance of the 
algorithm in the parallel pipelined environment is 
enhanced in comparison with the heuristic approach. The 
problem of assigning longer sub deadlines for tasks in 
the pipeline 
is rectified in the metaheuristic approach. 
 

II. MATERIALS AND METHODS 
 
2.1 ALGORITHM 
In the PCP scheduling algorithm, the critical path and 
partial critical paths of the whole workflow is to be 
found. In order to find these, some idealized, notion of 
the start time of each workflow task are needed before 
scheduling of the tasks are done. This means that two 
notions of the start times of tasks are available, the 
earliest start time computed before scheduling the 
workflow, and the actual start time computed by the 
scheduling algorithm. For each unscheduled task ti, the 
Earliest Start Time EST (ti) is found as the earliest time 
ti can start its computation regardless of the actual 
service that will process the task  which is determined 
during scheduling. Since grid is a heterogeneous 
environment and the computation time of tasks varies 
from service to service the EST cannot be found exactly.



ISSN (Online) : 2319 – 8753 
ISSN (Print)    : 2347 - 6710 

 

International Journal of Innovative Research in Science, Engineering and Technology 

An ISO 3297: 2007 Certified Organization,          Volume 3, Special Issue 1, February 2014 

International Conference on Engineering Technology and Science-(ICETS’14) 
 

On 10th & 11th February Organized by 
 

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India 

Copyright to IJIRSET                              www.ijirset.com                                                                 453 

 the Minimum Execution Time MET (ti) and the 
Minimum Transmission Time MTT (ei,j) is defined as 
follows 
 MET (ti) = min s∈Si ET (ti, s)  

MTT (ei,j) = min s∈Si,r∈Sj T T (ei,j, s, r) 
From the calculated MET and MTT, EST could be 
calculated 

EST(tentry)=0 
 EST(ti)=max EST(tp)+MET(tp)+MTT(tp); 
where tp belongs to ti’s parents 
The LFT(Latest Finishing Time) could be calculated as: 

LFT(texit)=D 
 LFT(ti)=minLFT(tc)-MET(tc)-MTT(tc); 
where tc belongs to ti’s children 

 
 
2.1.1. THE PCP SCHEDULING ALGORITHM 
  
Two dummy nodes tentry and texit have been added to 
the task graph, even if the task graph already  has only 
one entry or exit node.Algorithm I shows overall PCP 
algorithm for scheduling workflows. 
 
Algorithm 1: The PCP Scheduling Algorithm 
1: procedure SCHEDULEWORKFLOW(G(T,E), 
deadline) 
2: request available services for each task in G from 
GMD 
3: query available time slots for each service from related 
GSPs 
4: add tentry, texit and their corresponding edges to G 
5: compute MET(ti) for each task according to formula 1 
6: compute MTT(ei,j ) for each edge according to 
formula 2 
7: compute EST(ti) for each task in G according to 
formula 3 
8: mark tentry and texit as scheduled 
9: set AST(tentry) ← 0,AST(texit) ← deadline 
10: if (ScheduleParents(texit) is successfull) then 
11: make advance reservations for all tasks in G 
according to Schedule 
12: else 
13: return (failure) 
14: end if 
15: end procedure 
 
 
2.1.2. PARENT SCHEDULING ALGORITHM 
 
This algorithm receives a scheduled node as input and 
tries to schedule all of its parents before the actual start 
time of the input node itself. On success, it returns the 

desired schedule, but on failure, it returns a task that 
causes this failure and a suggested start time for this task 
that hopefully makes its scheduling possible. The 
pseudocode of parent scheduling algorithm could be 
written as 
 
Algorithm 2 Parents Scheduling Algorithm 
1: procedure SCHEDULEPARENTS(t) 
2: if (t has no unscheduled parent) then 
3: return (Success) 
4: end if 
5: ti ← t 
6: CriticalPath ← empty 
7: while (there exists an unscheduled parent of ti) do 
8: add CriticalParent(ti) to the beginning of CriticalPath 
9: ti ← CriticalParent(ti) 
10: end while 
11: initialize Constraints to 0 
12: while (CriticalPath is not scheduled) do 
13: if (SchedulePath(CriticalPath, Constraints) is 
unsuccessful) then 
14: set tfailure and SuggestedStartTime and return 
(Failure) 
15: end if 
16: for all (ti ∈ CriticalPath) do 
17: if (ScheduleParents(ti) is unsuccessful) then 
18: if (tfailure ∈ CriticalPath) then 
19: Constraints[tfailure] ← SuggestedStartTime 
20: break out from for loop 
21: else 
22: set tfailure and SuggestedStartTime and return 
(Failure) 
23: end if 
24: end if 
25: end for 
26: end while 
27: return ScheduleParents(t) 
28: end procedure 
 
2.1.3. The Path Scheduling Algorithm 
 
It starts from the first task in the path and moves forward 
to the last task, at each step selecting an untried available 
service for that task. If the selected service creates an 
admissible (partial) schedule, then it moves forward to 
the next task, otherwise it selects another untried service 
for that task. If there is no available untried service for 
that task left, then it backtracks to the previous task on 
the path and selects another service for it. After selecting 
a service for the current task t, say service s, the 
algorithm computes the start time ST(t,s) and the actual 



ISSN (Online) : 2319 – 8753 
ISSN (Print)    : 2347 - 6710 

 

International Journal of Innovative Research in Science, Engineering and Technology 

An ISO 3297: 2007 Certified Organization,          Volume 3, Special Issue 1, February 2014 

International Conference on Engineering Technology and Science-(ICETS’14) 
 

On 10th & 11th February Organized by 
 

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India 

Copyright to IJIRSET                              www.ijirset.com                                                                 454 

cost C(t,s) of running task t on service s.The pseudocode 
for the path scheduling algorithm could be written as; 
 
Algorithm 3 Path Scheduling Algorithm 
1: procedure SCHEDULEPATH(Path,Constraints) 
2: bestSchedule ← null 
3: t ← first task on the path 
4: while (t is not null) do 
5: s ← next untried service ∈ St 
6: if (s = Ø) then 
7: t ← previous task on the path and continue while loop 
8: end if 
9: Compute ST(t, s) and C(t, s) 
10: if (ST(t, s) < Constraintst) then 
11: ST(t, s) ← Constraintst 
12: end if 
13: for all (nodes sc ∈ Scheduled Children of t) do 
14: if (Actual Start Time of sc can not be met) then 
15: continue while loop 
16: end if 
17: end for 
18: if (t is the last task on the Path) then 
19: if (this schedule has a better cost than bestSchedule) 
then 
20: set this schedule as the bestSchedule 
21: t ← previous task on the path 
22: end if 
23: else 
24: t ← next task on the path 
25: end if 
26: end while 
27: if (an admissible schedule found) then 
28: mark all nodes of Path as scheduled 
29: set AST(t) ← ST(t, bestSchedulet) for all tasks t in 
Path 
30: update EST for all unscheduled children of all tasks 
in Path 
31: return (Success) 
32: else 
33: determine tfailure and a suggested start time for it 
34: return (Failure) 
35: end if 
36: end procedure 
 

III. RESULTS AND DISCUSSIONS 
 

As the first step of modifying the existing PCP 
algorithm, its heuristic nature is changed to metaheuristic 
one. Initially, only time constraint was considered for 
optimizing the cost of workflow scheduling. But this 
project resulted in the PCP algorithm which considers 
different parameters like storage, speed, and time etc for 

optimizing the cost of workflow scheduling. As first step 
of scheduling, prescheduling parameters of the tasks 
entered are found out. 
 A user interface was created to enable the users 
and service providers to enter new tasks, offer new 
services etc. Users could specify the requirements of the 
task like storage, speed etc. The prescheduling 
parameters like MET, EST, LFT etc are calculated. 
For instance, user have entered five tasks namely t0, t1, 
t2, t3, t4. The MET of the tasks are 6,20,8,10,15 
respectively. The EST of the first task are found using 
the MET as: 
1.EST(t0)=0+0+6 =6 
Likewise EST of the other tasks could be calculated. 

LFT(t0)=70 which is the deadline likewise the LFT of 
the other tasks could be calculated using the formula. 
The EST and LFT of the tasks could be tabulated as: 

Tasks EST LFT 
t0 6 70 
t1 22 37 
t2 30 29 
t3 40 19 
t4 55 4 
 
3.1SCREENSHOTS 
 
Users and service providers are allowed to enter new 
tasks and its specifications, calculate the prescheduling 
parameters, and offer new services by logging into the 
wfms. After logging in as user, new task and its 
requirements could be specified as: 



ISSN (Online) : 2319 – 8753 
ISSN (Print)    : 2347 - 6710 

 

International Journal of Innovative Research in Science, Engineering and Technology 

An ISO 3297: 2007 Certified Organization,          Volume 3, Special Issue 1, February 2014 

International Conference on Engineering Technology and Science-(ICETS’14) 
 

On 10th & 11th February Organized by 
 

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India 

Copyright to IJIRSET                              www.ijirset.com                                                                 455 

 
 
The prescheduling parameters like EST, LFT could be 
calculated from already defined formulas are found. The 
screenshot which shows the illustration of the 
prescheduling parameters could be listed as: 
 

 

The service providers could offer new services by adding 
new services and its properties in the workflow 
management system. This could be displayed as: 
 

 
 

IV. CONCLUSION 
 

Utility Grids enable users to obtain their desired 
QoS (such as deadline) by paying an appropriate price. 
In this paper, a new algorithm named PCP  is proposed 
for workflow scheduling in utility Grids that minimizes 
the total execution cost while meeting a user-defined 
deadline. The PCP algorithm has two phases: deadline 
distribution and planning. In the deadline distribution 
phase, the overall deadline of the workflow is divided 
over the workflow’s tasks, for which are proposed three 
different policies, i.e., Optimized, Decrease Cost, and 
Fair. In the planning phase, the best service is selected 
for each task according to its subdeadline. The algorithm 
could be evaluated by simulating it with synthetic 
workflows that are based on real scientific workflows 
with different structures and different sizes.  

The heuristic nature of the existing PCP 
algorithm is changed to metaheuristic nature. The PCP 
algorithm considered only time constraint for optimizing 
the cost of workflow scheduling. This nature of PCP 
algorithm is changed in such a way that it considers other 
requirements of users such that storage, speed, time etc 
while optimizing the cost of workflow scheduling. 

4.1. FUTURE ENHANCEMENT 
 Multiple parallel pipelines operate on distinct chunks of 
data. At the beginning, when the PCP finds the critical 
path of the whole workflow, it obviously consists of the 
entry task, one of the parallel pipes, plus the exit tasks of 



ISSN (Online) : 2319 – 8753 
ISSN (Print)    : 2347 - 6710 

 

International Journal of Innovative Research in Science, Engineering and Technology 

An ISO 3297: 2007 Certified Organization,          Volume 3, Special Issue 1, February 2014 

International Conference on Engineering Technology and Science-(ICETS’14) 
 

On 10th & 11th February Organized by 
 

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India 

Copyright to IJIRSET                              www.ijirset.com                                                                 456 

the workflow. Then, PCP tries to find the best schedule 
for this critical path, without considering the other 
parallel pipes. But if the other parallel pipes are 
considered, it is better to assign longer subdeadlines to 
these, because the other parallel pipelines also benefit 
from this extra time and the overall cost is reduced. 

  In the future, i  plan to modify the algorithm to improve 
its performance on parallel pipelines. The performance is 
enhanced using pipeline aggressive copy method which 
minimizes the waiting time of tasks while scheduling. 

REFERENCES 
 

1. D. Laforenza, “European Strategies Towards Next Generation 
Grids,” Proc. Fifth Int’l Symp. Parallel and Distributed Computing 
(ISPDC ’06), p. 11, 2006. 

2. J. Broberg, S. Venugopal, and R. Buyya, “Market-oriented Grids and 
Utility Computing: The State-of-the-Art and Future Directions,” J. Grid 
Computing, vol. 6, no. 3, pp. 255-276, 2008. 

3. J. Yu and R. Buyya, “Scheduling Scientific Workflow Applications 
with Deadline and Budget Constraints Using Genetic Algorithms,” 
Scientific Programming, vol. 14, nos. 3/4, pp. 217- 230, 2006. 

4. E. Deelman et al., “Pegasus: A Framework for Mapping 
ComplexScientific Workflows Onto Distributed Systems,” Science 
Programming, vol. 13, pp. 219-237, 2005. 

5. M. Wieczorek, R. Prodan, and T. Fahringer, “Scheduling 
ofScientificWorkflows in the Askalon Grid Environment,” 
SIGMODRecord, vol. 34, pp. 56-62, 2005. 

6. F. Berman et al., “New Grid Scheduling and ReschedulingMethods 
in the Grads Project,” Int’l J. Parallel Programming, vol. 33, pp. 209-
229, 2005. 

7. J. Yu and R. Buyya, “A Taxonomy of Workflow 
ManagementSystems for Grid Computing,” J. Grid Computing, vol. 3, 
pp. 171-200, 2005. 

8. M.R. Garey and D.S. Johnson, Computers and Intractability: A 
Guideto the Theory of NP-Completeness. W.H. Freeman, Jan. 1979.  

9. Y.K. Kwok and I. Ahmad, “Static Scheduling Algorithms 
forAllocating Directed Task Graphs to Multiprocessors,” 
ACMComputing Surveys, vol. 31, no. 4, pp. 406-471, 1999. 

10. H. Topcuoglu, S. Hariri, and M. Wu, “Performance-Effective 
andLow-Complexity Task Scheduling for Heterogeneous Computing,” 
IEEE Trans. Parallel and Distributed Systems, vol. 13, no. 3, pp. 260-
274, Mar. 2002. 

11.Saeid Abrishami,Mahmoud Naghibzadeh and Dick 
H.J.Epema,”Cost Driven Scheduling of Grid Workflows using Partial 
critical paths”, IEEE transactions on parallel and distributed systems, 
vol. 23, no. 8, August 2012. 

12. Reen-Cheng Wang, Su-Ling Wu, and Ruay-Shiung Chang,” A 
Novel Data Grid Coherence Protocol Using Pipeline-based Aggressive 
Copy Method” 
 

 
 
 
 
 


