

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2014

Copyright to IJIRCCE www.ijircce.com 5463

A Survey on Protection Techniques of Mobile

Agents from Malicious Hosts

Somnath Dey
1
, Prof. Dr. Devadatta Sinha

2

Assistant Professor, Department of Computer Science &Engineering, Sabita Devi Education Trust – Brainware Group

of Institutions, Kolkata,India
1

Professor, Department of Computer Science &Engineering, University of Calcutta, Kolkata, India
2

ABSTRACT: Mobile agent technology has become a new paradigm of distributed computing that can replace the

conventional client-server model. Despite its many practical benefits, it results in significant new security threats from

malicious agents and from malicious hosts. Many techniques for the first have been developed. The second problem

seems to be much harder. We will focus on the second one. We found that there is not a single, comprehensive solution

that provides complete protection of agents against malicious hosts. Existing solutions either only detect or to some

extent prevent attacks on agents. This paper gives a comparative survey on of the main security issues related to the

mobile agent paradigm. These issues include security threats, security requirements and techniques for keeping the

mobile agent secure against malicious hosts.

KEYWORDS: Security; Mobile Agent; MaliciousHost Problem; Masquerading;Denial of Service; Eavesdropping;

Alteration

I. INTRODUCTION

Duringthe last few years we have seen several fundamental changes in distributed and client-server computing

environment. This is due to the appearance of mobile agents. Mobile agent technology is getting popular as means for

an efficient way to access to remote resources on computer networks. Mobile agents are processes that migrate from

one node to other in the network autonomously to achieve user’s requests. Mobile agents are composed of code, data

and state. Agents migrate from one host to another taking the code, data and state with them. The state information

allows the agent to continue execution from the point where it was before leaving the previous host [1].

However, one of the main technical obstacles to a wider acceptance of the mobile agent is security. Sander and

Tschudin [2] present two types of security problems that need to be solved. The first is host protection against

malicious agents. The second is agent protection against malicious hosts. Many techniques have been developed for the

first kind of problem, such as access control, password protections, sand boxes etc. But the second problem appears to

be difficult to solve. The fact is that computers have complete control over all the executing programs. As a

consequence, it becomes very difficult to protect mobile agents from malicious hosts.

The rest of the paper is organized as follows: Section 2 deals with malicious host problem, Section 3 gives an

overview of the main solutions for keeping a mobile agent secure against malicious hosts, Section 4 gives the

comparative analysis of different solutions and finally section 5 gives some concluding remarks.

II. MALICIOUS HOST PROBLEMS

In a mobile agent system a malicious host is defined as a host that executes an agent and tries to attack the agent in

some way. When an agent is executed on a host it must use the resources available on that host. The host can monitor

an agent’s memory usage and each instruction given by the agent to the host. A malicious host may then attempt to

attack an agent in a number of ways.

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2014

Copyright to IJIRCCE www.ijircce.com 5464

The four main forms of attacks by malicious hosts on mobile agents are:

 A host masquerading as another host.

 Denial of service by the host to the agent.

 Eavesdropping on an agent’s activity.

 Alteration of the agent by the host.

A. Masquerading:

A masquerading host may try to trick the agent into believing it is another host and cause the agent to give the host

sensitive information. Once the masquerading host is able to gain the trust of the agent, it may then be able to read or

modify any of agent’s code, data and state if mechanisms are not put in place to protect this type of attack. The main

solution to prevent this type of attack is to use a strong authentication protocol to authenticate a host to an agent.

B. Denial of Service:

A host may deny an agent a specific service provided by the host. It is possible for a host to both intentionally and

unintentionally deny an agent a service. A host may deny an agent service so that the agent is not able to complete its

task. Another possible attack is the host could terminate the agent altogether. Furthermore, a host may deny a request

from an agent on a time-sensitive task so that the agent is unable to complete its task in its allotted time.

C. Eavesdropping:

The next attack that can be performed by the host on an agent is eavesdropping. In a client/server environment, the

typical eavesdropping attack comes from the monitoring of a communication channel. In the case of a mobile agent

system, malicious hosts may try to determine the code, data or flow control held by the agent. This form of attack is

difficult to prevent and detect.

Even when all of the information is hidden from the host, the host may still be able to infer some information from

the agent. The main problem is that the agent must execute on the host so the host is able to record each instruction

given to it by the agent.

D. Alteration:

The final form of attack by a host on an agent is the alteration of the agent. The host can alter an agent by changing

the data, code and control flow. A malicious host may try to change the code of an agent so that the agent performs

other tasks than were intended by its creator. A host may also try to change the data contained in the agent.

III. TECHNIQUES FOR MOBILE AGENT PROTECTION

The approaches to protect a mobile agent can be broadly classified into two:

(i) Detection mechanisms to detect unauthorized modification of code, state etc.

(ii) Prevention mechanisms for making it impossible to access or modify code, state or data.

A. Trusted Hardware:

One solution is to let a trusted third party supplied trusted hardware, in the form of tamper resistant devices, which

are placed at the site of the host and can interact with the agent platform [3]. A tamper resistant device can be in the

form of a smartcard. Such trusted hardware can then either protect the complete execution environment of the agent or

perform certain security tasks.

The major drawback of trusted hardware is the cost of such a solution.

B. Mutual Itinerary Recording:

Mutual Itinerary Recording is a general scheme for allowing an agent’s itinerary to be recorded and tracked by

another cooperating agent and vice versa [4] in a mutually supportive arrangement. When moving between agent

platforms, an agent conveys the last platform, current platform, and next platform information to the cooperating peer

through an authenticated channel. The peer maintains a record of the itinerary and takes appropriate action when

inconsistencies are detected. Attention is paid so that an agent avoids platforms already visited by its peer. The

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2014

Copyright to IJIRCCE www.ijircce.com 5465

rationale behind this scheme is founded on the assumption that only a few agent platforms are malicious, and even if an

agent encounters one, the platform is not likely to collaborate with another malicious platform being visited by the peer.

Therefore, by dividing up the operations of the application between two agents, certain malicious behavior of an agent

platform can be detected. The scheme can be generalized to more than two cooperating agents. For some applications it

is also possible for one of the agents to remain static at the home platform. Since the path records are maintained at the

agent level, this technique can be incorporated to any appropriate application.

Drawbacks of this technique include the cost of setting up the authenticated channel and the inability of the peer to

determine which of the two platforms is responsible if the agent is killed.

C. Itinerary Recording with Replication and Voting:

A faulty agent platform can behave similar to a malicious one. Therefore, applying fault tolerant capabilities to this

environment should help countering the effects of malicious platforms. One such technique for ensuring that a mobile

agent arrives safely at its destination is through the use of replication and voting [5]. The idea is that, rather than a

single copy of an agent performing a computation, multiple copies of the agent are used. Although a malicious platform

may corrupt a few copies of the agent, enough replicates avoid the encounter to successfully complete the computation.

This approach is suitable where agents can be duplicated without problems and survivability is the major concern.

The drawbacks are the additional resources consumed by replicated agents and message complexity increased.

D. Computing with Encrypted Functions:

The goal of Computing with Encrypted Functions [2] is to determine a method whereby mobile code can safely

compute cryptographic primitives, such as a digital signature, even though the code is executed in untrusted computing

environments and operates autonomously without interactions with the home platform. Theapproach is to have the

agent platform to execute a program embodying an enciphered function without being able to discern the original

function; the approach requires differentiation between a function and a program that implements the function.

Essentially, the problem that the author would like to solve is the following:

Agent’s program computes some function f and the host is willing to compute f(x) for the agent, but the agent wants

the host to learn nothing substantive about f. The protocol presented works in the following way, where E is some

encryption function:

 The owner of the agent encrypts f.

 The owner creates a program P(E(f)) which implements E(f) and puts it in the agent.

 The agent goes to the remote host, where it computes P(E(f))(x), and returns home.

 The owner decrypts P(E(f))(x) and obtains f(x).

Strength of security in this technique is directly proportional to the strength of encryption function. It is best suitable

technique for application which requires high security.

The drawback is that this technique does not prevent denial of service, replay, experimental extraction and other

forms of attack against the agent.

E. Partial Result Encapsulation:

Partial Result Encapsulation (PRE) is a detection technique that aims to discover any possible security breach on an

agent during its execution at different platforms. PRE is used to encapsulate the results of agent execution at each

visited platform in its travel path. The encapsulated information is later used to verify that the agent was not attacked

by a malicious platform. The verification process can be done when the agent returns to its home platform or at certain

intermediate points in its itinerary.

The PRE technique has different implementations. In certain scenarios, the agent itself performs the encapsulation,

while in others the platform does it. To meet essentially security requirements such as integrity, accountability and

privacy of the agent, PRE makes use of different cryptographic primitives such as encryption, digital signatures,

authentication codes and hash functions.

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2014

Copyright to IJIRCCE www.ijircce.com 5466

To ensure the confidentiality of its results, the agent encrypts the results by using the public key of its originator to

produce small pieces of cipher text that are decrypted later at the agent’s home platform using the corresponding

private key. This is one scenario of PRE where the agent itself does the encapsulation process. The agent uses a special

implementation of encryption called Sliding Encryption that was suggested by Young and Yung [6]. Sliding Encryption

encrypts small amounts of data within a larger block and thus obtains small pieces of cipher text. It is particularly

suitable for certain application where storage space is valuable such as smartcards [7].

Yee [8] suggested “Partial Result Authentication Code” (PRAC), where again the agent does the encapsulation of

the results. However, the agent’s originator also takes part in this scenario by providing the agent with a list of secret

keys before launching it. For each visited platform in an agent’s itinerary, there is an associated secret key. When an

agent finishes an execution at a certain platform in its itinerary, it summarizes the results of its execution in a message

for the home platform, which could be sent either immediately or later. In order to produce the PRAC, the agent uses

the associated secret key for the current platform to compute a Message Authentication Code (MAC), which is

encapsulated together with the message to produce PRAC. It is important to note that the agent erases the used secret

key of the current visited platform before its migration to the next platform. Destroying the secret key ensures the

“forward integrity” of the encapsulation results. Forward integrity [8] guarantees that no platform to be visited in the

future is able to modify any results from the previously visited platforms, as there is no secret key to compute the

PRAC for these results. Only the agent’s originator has a copy of all used secret keys and thus can verify the

encapsulated results. The result verification enables the originator to detect any modification (tampering) of the agent’s

results. Yee [8] suggested that the results could also be encrypted using the originator’s public key, in order to

guarantee both privacy and integrity.

Karjoth et al [9] proposed a “strong forward integrity” which also requires that the visited platform cannot later

modify its own results. Karjoth et al’s approach depends on the visited platform doing the encapsulation process instead

of the agent doing it. The visited platform encrypts the agent’s results by using the originator’s public key to ensure the

confidentiality of the results. Then the visited platform uses its private key to digitally sign the encrypted results

together with a hash chain. The hash chain links the results from the previous platform with the identity of the next

platform to be visited. This prevents the platform from changing its results later and thus ensures strong forward

integrity [9].

The PRAC technique has a number of limitations. The most serious of them occurs when a malicious platform

retains copies of the original keys or key generating functions of an agent. If the agent revisits the platform or visits

another platform conspiring with it, a previous partial result entry or series of entries could be modified without the

possibility of detection. Since the PRAC is oriented toward integrity and not confidentiality, the accumulated set of

partial results can also be viewed by any platform visited, although this is easily resolved by applying sliding key or

other forms of encryption.

F. Environmental Key Generation:

Environmental Key Generation [10] describes a scheme for allowing an agent to take predefined action when some

environmental condition is true. The approach centers on constructing agents in such a way that upon encountering an

environmental condition (for example string match in search) a key is generated which is used to unlock some

executable code cryptographically. The environmental condition is hidden through either a one-way hash or public key

encryption of the environmental trigger. The technique ensures that a platform or an observer of the agent cannot

uncover the triggering message or response action by directly reading the agent’s code. The procedure is somewhat

akin to the way in which passwords are maintained in modern operating systems and used to determine whether login

attempts are valid.

One weakness of this approach is that a platform that completely controls the agent could simply modify the agent

to print out the executable code upon receipt of the trigger, instead of executing it. Another drawback is that an agent

platform typically limits the capability of an agent to execute code created dynamically, since it is considered an unsafe

operation. An author of an agent can apply the technique in conjunction with other protection mechanisms for specific

applications on appropriate platforms.

G. Execution Tracing:

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2014

Copyright to IJIRCCE www.ijircce.com 5467

Execution Tracing [11] is a technique for detecting unauthorized modifications of an agent through the faithful

recording of the agent’s behavior during its execution on each agent platform. The technique requires each platform

involved to create and retain a nonrepudiatable log or trace of the operations performed by the agent while resident

there and to submit a cryptographic hash of the trace upon conclusion as a trace summary or fingerprint. A trace is

composed of a sequence of statement identifiers and platform signature information. The signature of the platform is

needed only for those instructions that depend on interactions with the computational environment maintained by the

platform. For instructions that rely only on the values of internal variables, a signature is not required and is omitted.

The technique also defines a secure protocol to convey agents and associated security related information among the

various parties involved, which may include a trusted third party to retain the sequence of trace summaries for the

agent’s entire itinerary. If any suspicious results occur, the appropriate traces and trace summaries can be obtained and

verified and a malicious host identified.

This technique has a number of drawbacks, the most obvious being the size and number of logs to be retained and

the fact that the detection process is triggered occasionally based on suspicious results or other factors. Other problems

identified include the lack of accommodating multi-threaded agents and dynamic optimization techniques. While the

goal of the technique is to protect an agent, the technique does afford some protection for the agent platform, providing

that the platform can also obtain the relevant trace summaries and traces from the various parties involved.

H. Obfuscated Code (Time Limited Black Box):

Obfuscation is a technique in which the mobile code producer enforces the security policy by applying a behavior

preserving transformation to the code before it sends it to run on different platforms that are trusted to various degrees

[12][13]. Obfuscation aims to protect the code from being analyzed and understood by the host. Consequently, the host

should not be able to modify the mobile code’s behavior or expose sensitive information that is hidden inside the code

such as a secret key, credit card number, etc. [12]. Typically the transformation procedure that is used to generate the

obfuscated code aims to make the obfuscated code very hard to understand or analyze by malicious parties. There are

different useful obfuscating transformations [14] - [17]. Layout obfuscation tries to remove or modify some

information in the code, such as comments and debugging information, without affecting the executable part of the

code. Data obfuscation concentrates on obfuscating the data and data structures in the code without modifying the code

itself.

Hohl [18] suggested using the obfuscation technique to obtain a time limited black box agent that can be executed

safely on a malicious platform for a certain period of time but not forever. D’Anna et al [12] pointed out that

obfuscation could delay but not prevent the attacks on agent via reverse engineering. They also argue that an attacker

with enough computational resources, such as enough time, can always de-obfuscate the code. Barak et al [19] studied

the theoretical limits of obfuscation techniques and showed that in general achieving completely secure obfuscation is

impossible. In addition to protecting a mobile agent, obfuscation can also be used for other applications such as

protecting digital watermarking, enforcement of software licensing and protecting protocols from spoofing [12][14]. As

far as the performance is concerned, some obfuscation techniques reduce the size of the code and thus speed up its

execution, while others achieve the opposite (control obfuscation) [15]. Obfuscation is considered resistant to

impersonation and denial of service attacks [14].

This technique is flexible and inexpensive. Depending on the need for security an application can be obfuscated

accordingly. In this technique there is a possibility to create different instances of one software application to battle

global attacks. It has low maintenance cost due to automation of the transformation process and compatibility with

systems. This technique is platform independent. This technique has number of drawbacks such as every

transformation introduce extra cost in memory and computation time necessary to execute the obfuscate program.

Obfuscation does not provide waterproof security. Most of these code transformations are not one way and it is hard to

decide where to use which transformations.

IV. COMPARATIVE ANALYSIS

The existing approaches for protecting mobile agents from malicious hosts use different mechanisms either

prevention or detection with different objectives. Here objectives are the network security requirements. All solutions

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2014

Copyright to IJIRCCE www.ijircce.com 5468

have a number of limitations as no solutions fulfil all the objectives. The following table summarizes the comparative

analysis of approaches of securing mobile agents.

TABLE I: COMPARATIVE ANALYSIS OF SECURITY SOLUTIONS TO PROTECT MOBILE AGENTS

Proposed Mechanisms Parameters

Prevent

Masquerading

Prevent

Eavesdropping

Prevent

Unauthorized

Access of

Information

Prevent

Denial of

Service

Prevent

Copy &

Replay

Detect

Tampering

Implementation

Available

Trusted Hardware

Yes No Yes Yes Yes Yes Yes

Mutual Itinerary

Recording

No No No No No Yes Yes

Itinerary Recording with

Replication & Voting

No No No No No Yes (fault

tolerance)

Yes

Computing with

Encrypted Functions

No Yes Partial No No Partial No

Partial Result

Encapsulation

Yes (Digital

Signatures)

Yes (Encryption) Partial Yes

(Encryption)

Yes

(Digital

Signatures)

Partial Yes

Partial Result

Authentication Codes

(PRAC)

No No Partial No No Partial Yes

Environmental Key
Generation

Yes Yes Partial No No Partial No

Execution Tracing Yes No No Yes Yes Yes No

Obfuscated Code (Time

Limited Black Box)

No No Yes (Time

Limited)

No No Yes (Time

Limited)

Yes

V. CONCLUSION

Conventional network management approach is based on client server model, suffers from problems like network

delays, lack of scalability, information bottleneck and excessive processing load at manager and heavy usage of

network bandwidth. The mobile agent technology gives improvements in terms of network bandwidth utilization,

significant reduction of network load etc.

This paper gives an overview about the security techniques of mobile agent against attack from malicious hosts.

Some of those techniques are still at the theoretical level and are not yet widely used in practice. None of the existing

techniques provides an optimal solution for all scenarios. However, a combination of various techniques may yield

powerful solutions.

The protection of mobile code against a malicious host is still an open research topic. It can be observed that non-

cryptographic techniques are generally not sufficient to protect a mobile code strongly. But on the other hand

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2014

Copyright to IJIRCCE www.ijircce.com 5469

cryptographic techniques are slow and computational expensive. So we need to select a balanced method for much

secure and high speed ended application.

REFERENCES

1. Lee, H.,Alves-Foss, J., and Harrison,S.,“The Use of Encrypted Functions for Mobile Agent Security”, Proceedings of the 37th Hawaii

International Conference on System Sciences, January 5-8, 2004.
2. Sander, T., and Tschudin, C.,“Protecting Mobile Agents against Malicious Hosts”, in G. Vigna, editor, Mobile Agents and Security,

LNCS, Springer-Verlag, Heidelberg, Germany, Vol.1419, pp.44-60,1998.

3. Wilhelm, U. G.,Staamann, S., and Buttyan L.,“Introducing Trusted Third Parties to the Mobile Agent Paradigm”, in J. Vitek and C.
Jensen, editors, Secure Internet Programming, LNCS, Springer-Verlag, New York, USA, Vol.1603, pp.471-491, 1999.

4. Roth, V.,“Secure Recording of Itineraries Through Cooperating Agents”, Proceedings of the ECOOP Workshop on Distributed Object

Security and 4th Workshop on Mobile Object Systems, Secure Internet Mobile Computations, INRIA, France, pp.147-154,1998.
5. Schneider, F. B.,“Towards Fault-Tolerant and Secure Agentry”, Proceedings of the 11th International Workshop on Distributed

Algorithms, Saarbucken, Germany, September, 1997.

6. Young, A., and Yung, M.,“Sliding Encryption: A Cryptographic Tool for Mobile Agents”, Proceedings of the 4th International Workshop
on Fast Software Encryption, FSE’97, January, 1997.

7. Karjoth, G., and Posegga, J.,“Mobile Agents and Telcos’ Nightmares”, in Annales des Telecommunications, Vol.55, no.7/8, pp.29-41,

2000.
8. Yee, B.,“A Sanctuary for Mobile Agents”, DARPA Workshop on Foundations for Secure Mobile Code, February, 1997.

9. Karjoth, G.,Asokan, N., and Glc, C.,“Protecting the Computation Results of Free-Roaming Agents”, Second International Workshop on

Mobile Agents, Stuttgart, Germany, September, 1998.

10. Riordan, J., and Schneier, B.,“Environmental Key Generation Towards Clueless Agents”, in G. Vinga, editor, Mobile Agents and

Security, LNCS, Springer-Verlag, Vol.1419, 1998.

11. Vigna, G.,“Protecting Mobile Agents through Tracing”, Proceedings of the 3rd ECOOP Workshop on Mobile Object Systems, Jyvälskylä,
Finland, June, 1997.

12. D’Anna, L., Matt, B., Reisse, A.,Vleck, T. V., Schwab, S., and LeBlanc, P.,“Self-Protecting Mobile Agents Obfuscation Report”,

Network Associates Laboratories, June, 2003.
13. Jansen,Wayne A.,“Countermeasures for Mobile Agent Security”, Computer Communication, Special issue on Advances in Research and

Application of Network Security, November, 2000.

14. Wroblewski, G.,“General Method of Program Code Obfuscation”, PhD Dissertation, Wroclaw University of Technology, Institute of
Engineering Cybernetics, 2002.

15. Hachez, G.,“A Comparative Study of Software Protection Tools Suited for Ecommerce with Contributions to Software Watermarking and

Smart Cards”, UniversiteCatholique de Louvain, 2003.
16. Collberg, C.,Thomborson, C.,and Low, D.,“A Taxonomy of Obfuscating Transformations”, Technical Report 148, Department of

Computer Science, University of Auckland, July, 1997.

17. Armoogum, S., and Caully, A.,“Obfuscation Techniques for Mobile Agent Code Confidentiality”, March, 2010.
18. Hohl, F.,“Time Limited Blackbox Security: Protecting Mobile Agents from Malicious Hosts”, G. Vigna, editor, Mobile Agents and

Security,LNCS,Springer-Verlag,Vol.1419, pp.92-113, 1998.

19. Barak, B.,Goldreich, O.,Impagliazzo, R.,Rudich, S.,Sahai, A.,Vadhan, S., and Yang, K.,“On the (Im)possibility of Obfuscating
Programs”, in Advances in Cryptology, Proceedings of Crypto’2001,LNCS, Springer-Verlag,Vol.2139, pp.1-18,2001.

BIOGRAPHY

Somnath Dey is an Assistant Professor, Department of Computer Science & Engineering in Sabita Devi Education

Trust – Brainware Group of Institutions. He received his M.Techin Computer Science &Engineering from University

of Calcutta, Kolkata, India. His research interests are Cryptography, Distributed Systems, Mobile Computing, Mobile

Agents etc.

Prof. (Dr.) Devadatta Sinha is a Professor, Department of Computer Science & Engineering, University of Calcutta,

Kolkata, India. He received his PhD in the area of Computer Science from Jadavpur University. His research interests

are Parallel Computing, Software Engineering, Distributed Systems etc.

http://www.ijircce.com/

