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ABSTRACT 

 

We examine herein a simple model for the evolution in time of the pressure 

which a suddenly vaporized, ablating layer exerts upon the subjacent body. 

The model invokes a plausible construct of surface material instantaneously 

thrust into a gaseous regime governed by a Maxwell-Boltzmann phase space 

distribution. The surface pressure per se is gotten by computing the time rate 

of change of the momentum per unit area which the retrograde molecules, 

and only those, transfer through impact/reflection to the unvaporized body 

below. An explicit pressure formula, one alluding to the variable gas 

temperature within the vaporized layer, is obtained as a single quadrature 

requiring numerical integration at finite times 𝜏 > 0 past the onset of impact. 

Limiting, null pressure values, both close-in, with 𝜏 = 0 +, and in pulse 

aftermath as 𝜏 → ∞, can nevertheless be extracted in analytic terms, 

confirming in particular the indispensable asymptotic evanescence. A 

universal formula in dimensionless variables is given for pressure versus time, 

both suitably normalized. 

Keywords: Maxwell-Boltzmann velocity distribution; Time-of-flight arrival 

delay; Heaviside unit step function; Dirac delta function; Momentum transfer 

in non-dissipative elastic recoil; Pulse pressure profile reduced to a single 

quadrature; Dimensionless pulse pressure formulae 

INTRODUCTION 

While nuclear exchanges in space or elsewhere seem less likely than they were during the Cold War of recent memory, 

threatening possibilities of exoatmospheric blasts nevertheless do persist. Any such blast would inflict, short of total 

destruction, a surface vaporization of space vehicles in its proximity. The vaporized atoms, as part of their recoil against 

the subjacent, be it solid or liquid skin layer, would exert upon the space vehicle a pressure pulse capable of deflecting it 

from its intended trajectory. 

We seek here to abstract from this scenario an idealized model wherein an infinite sheet of solid material has a thin layer 

instantaneously vaporized as a consequence of, say, an intense x-ray impact. The temperature of the vaporized gas is set 
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by having the local energy deposition, minus the heat of vaporization, distributed through a 𝑘𝑇
2⁄  equipartition among all 

available modes, that local gas being Maxwell-Boltzmann distributed thereafter in velocity space. Gas molecules already 

directed outward contribute nothing to surface pressure, whereas those with inward velocity components reflect from the 

solid or liquid interface and thus impart to it a perpendicular component of momentum whose rate of change is experienced 

as a surface pressure pulse. Set out below is our attempt to follow the time history of this pulse. 

DESCRIPTION 

We measure co-ordinate 𝑥 in centimeters, perpendicularly inward from the surface about to undergo ablation. An impulse 

of energy 𝐼 (ergs per square centimeter) is incident along the normal from the exterior at time 𝜏 = 0 sec, and penetrates 

instantaneously while shedding strength in accordance with 𝐼𝑒−𝛼𝑥 , real positive α being an attenuation constant (inverse 

centimeters) characteristic of surface composition and the nature of the impinging energy. Accompanying pulse decay is a 

continuous, local deposition of energy into the surrounding material in an amount 𝛼𝐼𝑒−𝛼𝑥 (ergs per cubic centimeter). 

We imagine the surface material to be vaporized down to a depth 𝑑, past which there ensues a transition layer bridging a 

melted, boiling phase into a solid regime. The vaporized material, with 𝑛 particles per unit volume and 𝑓 degrees of freedom 

per molecule, regardless of whether these degrees pertain to external dynamic or internal energies, is conceived to exhibit 

a temperature profile  𝑇(𝑥) (degrees kelvin) given by  

(x)
2

x

v

fkn
T Ie c  

 …………… (1) 

wherein 𝑐𝑣 is the heat of vaporization per unit volume and we evidently must have 𝛼𝐼 > 𝑐𝑣. At the boiling depth 𝑑 we require 

that 

(d)
2 2

d
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fkn fkn
T T Ie c   

…………… (2) 

with 𝑇𝑏, known a priori, being the vapor temperature in equilibrium with the boiling melt beyond.1 Moreover, at all preceding 

points  0 ≤ 𝑥 ≤ 𝑑 the vaporized material is assumed to undergo an instantaneous entry into a local Maxwell-Boltzmann 

(MB) phase space distribution  

23/2

2 (x)

2 (x)

mv

kTm
n e

kT

 
 
   

with k=1.38064852 × 10−16 erg/oK and 𝑚 the individual molecular mass. 

Molecular momentum transfer at vaporization/melting depth d 

We consider an infinitesimal area 𝑑𝐴 upon the vapor/melt interface and adopt polar co-ordinates (𝜌, 𝜑) centered at some 

point therein. Area element 𝑑𝐴 subtends a solid angle   𝑑𝐴 × (𝑑 − 𝑥)(𝜌2 + (𝑑 − 𝑥)2)−
3

2  at any point in the vapor overlay, 

and it is only the vapor particles having velocity directions within that angle which are capable of impinging upon 

𝑑𝐴 following the delay2 
(𝜌2 + (𝑑 − 𝑥)2)

1
2⁄

𝑣⁄ . On impact/rebound they each transfer a perpendicular component of 



Research & Reviews: Journal of Material Sciences                                            e-ISSN: 2321-6212 

                                                                                                                                  
 

 
RRJOMS| Volume 11 | Issue 3 |September, 2023                                                                                        71 

momentum in an amount 
2𝑚𝑣𝜁

𝑅⁄ , it being assumed, simplistically to be sure, that elastic surface collisions prevail. And 

so, with the MB distribution in mind, we find that infinitesimal area 𝑑𝐴 absorbs in time 𝜏 ≥ 0 a perpendicular momentum 

𝑑𝑃(𝜏) in an amount. 

2
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with 𝑈+(𝑣𝜏 − 𝑅) being the Heaviside unit step, unity when 𝑣𝜏 > 𝑅 and zero otherwise, and 𝑇(𝜁) replacing 𝑇(𝑥) in the 

obvious way (consult Endnote 2). Differentiation wrt 𝜏 brings in the Dirac delta function δ and provides the interface ablative 

pressure 𝑝(𝜏) in the form 
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the integration over velocity 𝑣 yielding easily in the presence of Dirac’s delta. Furthermore,  

…………… (5) 

which demotes the right-hand side of (4) into just a single quadrature, 
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Limiting evaluations 

At all finite times 𝜏 and with realistic parameters in hand, outright numerical integration is required to extract pressure 

estimates from (6). This obstacle notwithstanding, some semi-quantitative statements can be made at the limiting extremes 

𝜏 ↓ 0 + and 𝜏 → ∞ : 

To begin with, as 𝜏 → ∞, it evident by inspection that 𝑝(𝜏) properly descends to zero as the inverse cube power 𝜏−3 . 

Likewise null close to the time origin are 𝑝(0+) from (6) and its slope 

2 2

2 2

3/2 3 1

4 2 22 ( ) 2 ( )2 2
6

0 0

( ) 4 n
( ) 3 ( )

2

m md d

k T k Tdp k m m
d T e d T e

d k k

 

    
    

  

  
 
  

   
    

 
…………… (7) 

since, whenever 𝜁 > 0, l’Hôpital’s rule gives 
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for all three powers l = 3, 4, and 6 now in play. Thus 

 

…………… (9) 

 

which, in conjunction with 𝑝(0+) = 0, bespeaks an exceedingly gradual pressure growth past the moment of impact. 

On the other hand, glancing somewhat further ahead, we find the time 𝜏𝑝𝑝 of peak pressure by setting 
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or else 
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and then solving numerically for the dimensionless variable 
𝑘𝜏𝑝𝑝

2 𝑇𝑏

𝑚𝑑2 . The existence of 𝜏𝑝𝑝 is guaranteed by virtue of the fact 

that (6) presents the pressure 𝑝(𝜏) as a product of factors, one of which 𝜏−3 clearly falls with growth in 𝜏, whereas the other 

equally clearly rises. 

Universal pressure profile 

In a similar vein, prior to numerical implementation, we recast (6) in terms of a dimensionless time 

2
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and temperature  
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as a similarly dimensionless pressure. In view of Equations (1) and (2) we further have 
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which latter reveals the second line of (15) in its universal aspect of depending only upon dimensionless parameter 

groupings. 

A numerical example 

We have carried out computations based on Equations (15) and (16) roughly tailored for aluminum. Accepted values 

gleaned from the open literature are 

3

 26.98 

 2.375 /
.

   2743º
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Liquid density g cm

Boiling point temperature T K

Heat of vaporization c kJ mol
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 
   …………… (17) 

With use of Avogadro’s number N = 6.02214 × 1023 atoms/mol we proceed to find the boiling substrate number density 

23 22 32.375
6.02214 10 5.301 10 / .

26.98
n atoms cm    

…………… (18) 
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Setting 𝑓 = 3 so as to account for purely translatory freedom and with Boltzmann’s constant  𝑘 = 1.38064852 ×

10−16 𝑒𝑟𝑔/°𝐾, we get 

10 33.01 10 /
2

b

fkn
T erg cm 

…………… (19) 

whereas 

12 3 11 32.375
2.93 10 / 2.579 10 / .

26.98
vc erg cm erg cm    

…………… (20) 

If we regard 50 keV as a typical x-ray photon energy then, from an online, public access x-ray attenuation calculator [1] we 

find  

0.463/ .cm    ………….. (21) 

We next turn the matter on its head by insisting upon a vaporized depth d of just one cm and solving 

1
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for the energy inflow 

11 29.883 10 /I erg cm 
…………… (23) 

adequate to achieve this, a value that lies comfortably within the range of nuclear blast intensities [2]. 

And finally, with the toolkit of values thus assembled, we find, via Gaussian integration of (15), the ablative pressure 

temporal profile depicted in Figure 1. Furthermore, with the scaling factors from (12) and the first line of (15), respectively 

for time 

2
51.088 10

b

md
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kT
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…………… (24) 

and pressure 

10 22
1.602 10 /bnkT dyne cm


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…………… (25) 

 

kept firmly in mind, this pressure pulse would seem to indicate convincingly that the ablating surface experiences a 

substantial jolt, easily able to deflect from its intended course the subsequent trajectory of an exposed space vehicle. The 

cumulative impulse 
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is tracked in Figure 2, once more in dimensionless terms. Its scale is given by 
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Figure 1. Normalized pressure profile 𝑝∗(𝜏∗) 𝑣𝑠 normalized time 𝜏∗.  

 

Figure 2. Normalized impulse profile 𝑖∗(𝜏∗) 𝑣𝑠 normalized time 𝜏∗. 
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ENDNOTES 

1. Under the present circumstances, a resolute optimism is required to even think, let alone to write about thermodynamic 

equilibrium, including our foundational allusion to the Maxwell-Boltzmann distribution law. Otherwise put, we are 

committed here to the assumption that the granularity of our temporal perception is far, far coarser than any operative 

thermalization times. Observe in passing that (2) gives the vaporized depth  

1
log

2

v
b

cfkn
d T

I I  

 
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   
 

quite explicitly, with an implied insistence that 𝐼 > (𝑓𝑘𝑛𝑇𝑏 + 2𝑐𝑣)/2𝛼, an inequality stronger even than that mentioned 

in connection with Eq. (1) and designed to accommodate a positive depth d to the prescribed value of melting 

temperature Tb. 

2. For ease of writing we set henceforth 𝜁 = 𝑑 − 𝑥, 0 ≤ 𝑥 ≤ 𝑑, for the distance upward from the vaporized/unvaporized 

interface, and 𝑅 = (𝜌2 + 𝜁2)
1

2 for the molecular flight interval. We then proceed to abuse notation by writing 𝑇(𝜁) 

for 𝑇(𝑥) as that latter appears on the right in Eq. (1). Such notational abuse still further intensifies in (11) et seq., when 

scaling by depth 𝑑 leads us to write 𝑇(𝜁) = 𝑇(𝜂𝑑). 
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