
ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)

On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 939

Achieving Round Robin Access in Controller Area
Networks

Yuvaraj.S.A1, 2 Siddanna Gowd L.C2

Research scholar, St. Peter’s University, Tamilnadu, India1
Professor, Dept. of ECE, GRT Institute of Engineering and Tech., Tamilnadu, India2

ABSTRACT – Controller Area Network (CAN) is a
real-time network that was initially conceived for
automotive applications, but which is now becoming
very popular as a fieldbus for automated factory
environments because of its appealing features and
low implementation costs. Controller Area Networks
(CANs) are being used more and more today to
support communications in real-time systems.
However, under heavy traffic conditions the CAN
access protocol may exhibit a quite unfair behavior,
in particular, when the control applications require
the same quality of service to be ensured to a number
of different objects.

In this paper, a new technique is proposed

which is based on CAN and introduces few changes to
the original protocol. Such a solution is able to ensure
a very fair behavior, which resembles the one
obtained in token based networks while maintaining,
at the same time, the reduced access delays typical of
CAN when operating in low traffic conditions.
Furthermore, it preserves an optimum degree of
compatibility with the existing devices and
applications based on CAN.

I INTRODUCTION

 Controller Area Network has been adopted by
industry as the standard network technology to transmit
data for sensors and actuators. This is due its fast
response and high reliability for applications. CAN[1] is
a serial communication protocol that efficiently supports
distributed real time control with the high level of
security .By using CAN wiring complexity can be avoid
also. A rugged serial bus designed for industrial
environments. Introduced by Bosch in 1986 for in-

vehicle networks in cars, it is used in myriad applications
including factory automation, building automation,
aircraft and aerospace as well as in cars, trucks and buses.
The CAN bus replaces bulky wiring harnesses with a
two-wire differential wire.

CAN provide services at layers 1 and 2 of the
OSI model and uses a broadcast method for placing
frames on the wire. CAN provide low-speed, fault-
tolerant transmission of 125 Kbps up to 40 meters, which
can function over one wire if a short occurs.
Transmission without fault tolerance is provided up to 1
Mbps and 40 meters, and distances up to 1 km are
achieved with bit rates of 50 Kbps. This
interface/protocol was designed to allow
communications within noisy environments. The CAN
module is a communication controller, implementing the
CAN 2.0 A/B protocol as defined in the BOSCH
specification. The CAN protocol is an international
standard defined in the ISO 11898. Beside the CAN
protocol itself the conformance test for the CAN protocol
is defined in the ISO 16845, which guarantees the
interchangeability of the CAN chips.

ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)

On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 940

Figure 1 Broadcast

CAN is based on the “broadcast communication
mechanism”, which is based on a message-oriented
transmission protocol. Every message has a message
identifier, which is unique within the whole network [3]
since it defines content and also the priority of the
message. It is easy to add stations to an existing CAN
network without making any hardware or software
modifications to the present stations as long as the new
stations are purely receivers. This allows for a modular
concept and also permits the reception of multiple data
and the synchronization of distributed processes. In real-
time processing the urgency of messages to be
exchanged over the network can differ greatly; a rapidly
changing dimension, e.g. engine load, has to be
transmitted more frequently and therefore with less
delays than other dimensions e.g. engine temperature.
The priorities are laid down during system design in the
form of corresponding binary values and cannot be
changed dynamically. The identifier with the lowest
binary number has the highest priority.

 Bus access conflicts are resolved by bit-wise
arbitration of the identifiers involved by each station
observing the bus level bit for bit. This happens in
accordance with the wired-and-mechanism, by which the
dominant state overwrites the recessive state. All those
stations (nodes) with recessive transmission and
dominant observation lose the competition for bus access.
All those "losers" automatically become receivers of the
message with the highest priority and do not re-attempt
transmission until the bus is available again. The “CAN
base frame” supports a length of 11 bits for the identifier
(formerly known as CAN 2.0 A), and the “CAN

extended frame” supports a length of 29 bits for the
identifier (formerly known as CAN 2.0 B). CAN base
frame format. A CAN base frame message begins with
the start bit called "Start Of Frame (SOF)", this is
followed by the "Arbitration field" which consist of the
identifier and the "Remote Transmission Request (RTR)"
bit used to distinguish between the data frame and the
data request frame called remote frame. The following
"Control field" contains the "IDentifier Extension (IDE)"
bit to distinguish between the CAN base frame and the
CAN extended frame, as well as the "Data Length Code
(DLC)" used to indicate the number of following data
bytes in the "Data field". If the message is used as a
remote frame, the DLC contains the number of requested
data bytes. The "Data field" that follows is able to hold
up to 8 data byte. The integrity of the frame is
guaranteed by the following "Cyclic Redundant Check
(CRC)" sum. The "Acknowledge (ACK) field"
compromises the ACK slot and the ACK delimiter. The
bit in the ACK slot is sent as a recessive bit and is
overwritten as a dominant bit by those receivers, which
have at this time received the data correctly. Correct
messages are acknowledged by the receivers regardless
of the result of the acceptance test. The end of the
message is indicated by "End Of Frame (EOF)". The
"Intermission Frame Space (IFS)" is the minimum
number of bits separating consecutive messages. Unless
another station starts transmitting, the bus remains idle
after this.

Unlike other bus systems, the CAN protocol does
not use acknowledgement messages but instead signals
errors immediately as they occur. For error detection the
CAN protocol implements three mechanisms at the
message level:
 Cyclic Redundancy Check (CRC): The CRC

safeguards the information in the frame by adding a
frame check sequence (FCS) at the transmission end.
At the receiver this FCS is re-computed and tested
against the received FCS. If they do not match, there
has been a CRC error.

 Frame check: This mechanism verifies the structure
of the transmitted frame by checking the bit fields
against the fixed format and the frame size. Errors
detected by frame checks are designated "format
errors".

 ACK errors: Receivers of a message acknowledge
the received frames. If the transmitter does not

ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)

On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 941

receive an acknowledgement an ACK error is
indicated.
The CAN protocol also implements two
mechanisms for error detection at the bit level:

 Monitoring: The ability of the transmitter to detect
errors is based on the monitoring of bus signals.
Each station that transmits also observes the bus
level and thus detects differences between the bit
sent and the bit received. This permits reliable
detection of global errors and errors local to the
transmitter.

 Bit stuffing: The coding of the individual bits is
tested at bit level. The bit representation used by
CAN is "Non Return to Zero (NRZ)" coding. The
synchronization edges are generated by means of bit
stuffing. That means after five consecutive equal bits
the transmitter inserts a stuff bit into the bit stream.
This stuff bit has a complementary value, which is
removed by the receivers.

 If one or more errors are discovered by at least one
station using the above mechanisms, the current
transmission is aborted by sending an "error frame". This
prevents other stations from accepting the message and
thus ensures the consistency of data throughout the
network. After transmission of an erroneous message
that has been aborted, the sender automatically re-
attempts transmission (automatic re-transmission). Nodes
may again compete for bus access. The CAN protocol
therefore provides a mechanism to distinguish sporadic
errors from permanent errors and local failures at the
station.

On the bit-level (OSI level one, physical layer)
CAN uses synchronous bit transmission. This enhances
the transmitting capacity but also means that a
sophisticated method of bit synchronization is required.
The CAN protocol regulates bus access by bit-wise
arbitration. The signal propagation from sender to
receiver and back to the sender must be completed within
one bit-time. For synchronization purposes a further time
segment, the propagation delay segment, is needed in
addition to the time reserved for synchronization, the
phase buffer segments. The propagation delay segment
takes into account the signal propagation on the bus as
well as signal delays caused by transmitting and
receiving nodes.

Two types of synchronization are distinguished:
hard synchronization at the start of a frame and
resynchronization within a frame.

 After a hard synchronization the bit time is
restarted at the end of the sync segment.
Therefore the edge, which caused the hard
synchronization, lies within the sync segment of
the restarted bit time.

 Resynchronization shortens or lengthens the bit
time so that the sample point is shifted
according to the detected edge
The basis for transmitting CAN messages and

for competing for bus access is the ability to represent a
dominant and a recessive bit value. This is possible for
electrical and optical media so far. Also power line and
wireless transmission is possible. For electrical media the
differential output bus voltages are defined in ISO
11898-2 and ISO 11898-3, in SAE J2411, and ISO
11992 (see below). With optical media the recessive
level is represented by "dark" and the dominant level by
"light". The physical media most commonly used to
implement CAN networks are a differentially driven pair
of wired with common return. The parameters of the
electrical medium become important when the bus length
is increased. Signal propagation, the line resistance and
wire cross sections are factors when dimensioning a
network. In order to achieve the highest possible bit rate
at a given length, a high signal speed is required.

II. REQUIREMENT OF THE ARCHITECTURE

 The CAN protocol uses priority based packet
transfer and there is no time sharing among between the
device request. If the highest priority is always want to
transmit the data, the other devices which are requiring
will not be honored. To overcome this drawback a new
approach is proposed in this project and it will work in
any environmental condition.

III. NEW PROTOCOL IMPLEMENTATION

CAN relays on medium access control (MAC)
which is based carrier-sense multiple-access (CSMA) [2]
technique. CAN quite different from Ethernet networks.
In CAN a priority is associated to each transmitted frame,
which is used to resolve possible collisions so that this
network can be used in real-time systems characterized
by tight timing constraints. In CAN, data and

ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)

On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 942

information are exchanged as communication objects (or,
simply, objects), associated to identifiers that are used to
tag each frame in the transmission phase. According to
the protocol rules, the (numerically) lower the identifier
of the frame is, the higher is the priority when competing
to gain access to the shared communication medium. The
rules by which a CAN node can access the shared
communication medium are very simple: a frame can be
transmitted when the state of the bus, which is monitored
by each node, is found to be idle. A suitable arbitration
[7,8] procedure based on the binary countdown
technique ensures that, when two or more nodes collide,
the contention is resolved by assigning the bus to the
node which is transmitting the highest priority frame. If a
transmission request is issued while the bus is busy, the
requesting node waits until the bus turns to the idle state
and then tries to send its frame. If several transmission
requests are pending, a collision is unavoidable: in this
case, the subsequent arbitration phase ensures that the
node which is sending the object with the numerically
lowest identifier wins the contention and keeps on
transmitting. On their own, the losing nodes immediately
interrupt their transmissions and switch to the receiving
state.

In fact, when bus utilization grows and
approaches 100%, the nodes transmitting high-priority
objects can hog all the available bandwidth, excluding
the other stations from accessing the bus. A modification
of the CAN protocol called medium utilization state
tracking (MUST) is introduced here, which provides
very fair behavior without requiring the basic protocol to
be changed in depth. In low traffic conditions the MUST
technique behaves much like a CSMA network, while,
when the offered load increases, it achieves
performances similar to the token-based networks.

To overcome the drawbacks of CAN mentioned
in the previous section, to analyze the behavior of such a
network in more detail. In Fig. 2 sample traffic patterns
are sketched for a CAN network in both low and heavy
traffic conditions. Each frame has been labeled with the
related identifier. Fig. 2(a) shows that, in low traffic
conditions, nodes seldom collide and, even if they do,
they very likely need not retry the transmission more
than once (the probability of a second collision is
negligible), so that very low delays (typical of CSMA
networks) are experienced.

Figure 2 Typical traffic patterns in CAN networks

By contrast, when the load offered to the

network grows higher the traffic pattern on the bus turns
into a sequence of frame bursts [Fig. 2(b)], each one
containing one or more frames which are sent one after
the other without the bus becoming idle between any pair
of adjacent transmissions. The basic idea to enforce fair
behavior in a conventional CAN network is to modify
the original protocol so as to limit the number of times
each object can be sent inside any one of the bursts
mentioned above. In this way, the length of each burst is
upper bounded and the same occurs for the transmission
delays, as happens in the token-based networks. A run as
a burst of frames is assumed, each one characterized by a
different identifier, which are exchanged over the
network without the bus becoming idle between any two
adjacent frame transmissions, as shown in below.

Figure 3 Sample traffic pattern in MUST with runs

highlighted

The MUST access scheme operates according to
very simple rules: in fact, they are exactly the same as

ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)

On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 943

CAN, except that each object can be sent at most once in
each run. Thus, the new protocol requires only one
additional mechanism to detect an End of Run (EOR)
condition. The easiest way to accomplish this task is by
tracking the utilization state (either busy or idle) of the
communication medium. In CAN, each frame
transmission is followed by a period of time, called
intermission (IMS), which consists of three recessive bits.
After the intermission has completely elapsed, the bus is
considered idle and each node can start transmitting a
new frame, which begins with a start of frame (SOF) bit
at the dominant level. For our purposes, when the bus is
found recessive for a given additional time after the
intermission, it is assumed to be completely idle. In
practice, the concept of long intermission can be
introduced, which consists of the conventional
intermission field followed by an intermission extension
(IMX) and can be used to denote an EOR condition, as
shown in below.

Figure 4 Sample frame format of MUST including the

IMX

Even though the intermission extension could

include, in its simplest form, a single bit at the recessive
level, robustness issues suggest making this field similar
to the conventional intermission (i.e., three recessive
bits). In this way, it is possible to detect an EOR
condition by monitoring the state of the bus to find out
when it becomes completely idle, with negligible effects
on protocol complexity and with almost no penalties for
communication efficiency. As stated previously, frames
in a run have to appear in a strictly increasing identifier
order, so as to improve network fairness. This
requirement can be easily fulfilled by letting each node
remember the identifier of the last frame which was
exchanged on the bus (either read or written), for
instance, by means of a suitable m register. The MUST
mechanism can be described formally by means of the
protocol automaton in figure below.

Figure 5 Protocol automaton for the MUST protocol

The automaton shows that a node can send a

new frame in the current run if and only if its identifier is
strictly greater than m, otherwise it has to wait for the
next run. When an EOR condition is detected, the m
register is set back to the negative value -1, so as to
enable a new run to be started. In this case, in fact, every
object can be sent again, irrespective of its identifier. It
can be easily proven that all the frames which are
waiting for transmission are ordered by the access
mechanism described above and the shape of the traffic
pattern on the bus effectively consists of a sequence of
runs. As a consequence, MUST features a round-robin
service policy, which resembles the one provided by
many token-based networks and ensures a fair and
deterministic behavior in a number of situations where
conventional CAN is not able to satisfy such a
requirement.

Frame time depends only on the size of the
frame and the bit rate adopted in the network, and its
evaluation is a trivial issue. On the contrary, when an
arbitrary message generation pattern is considered there
is in general no upper bound for the queuing time,
whatever the access mechanism adopted in the network.
The queuing time is effectively reduced to zero and the
transmission time can be evaluated very simply as the
sum of the access time and the frame time [4]. Such an
assumption fits in well with many hard-real-time
systems: in fact, if a new value of an object becomes
available before the old one has been delivered, then the

ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)

On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 944

deadline of the related data has certainly been exceeded,
thus violating the timing constraints of the controlling
application. To evaluate the worst case delay a frame can
experience in a network based on the MUST technique,
it should be noted that the longest permitted run
corresponds to a sequence of frames, being the maximum
number of data streams (i.e., different objects) which can
be defined in the system. In fact, according to the MUST
access rules, each object (characterized by a unique
identifier) can be sent at most once per run. Two
different situations are

 I > j: In this case, object can be sent in the current

run. The transmission of object can be delayed by
the objects whose identifier is strictly lower than
(because they have a higher priority, according to
the CAN protocol) but strictly higher than
(because of the MUST access rules).

 I < j: In this case, object cannot be sent in the
current run. Hence, it has to wait for the beginning
of the next run. The delay which object can incur
is given by the sum of the time taken to complete
the current run (at most N-j frame times), the
duration of IMX (few bit times) and the time spent
in the next run waiting for higher priority frames
to be sent (at most i frame times). This gives as a
result a maximum access delay equal to N+i-j
frame times.

A slightly different treatment is reserved for the
(unusual) case when other nodes start transmitting at
exactly the same time as the transmission of object
begins, after each transmitting node detected a bus idle
(or completely idle) condition.
 i is the smallest value among the identifiers of all

the objects involved in the collision: in this case,
object is sent immediately.

 i is not the smallest value: this condition is similar
to case 1 described above.

3.1 MUST MECHANISM WITH SEVERAL
PRIORITY CLASSES

The round-robin service policy provided by the

MUST technique, though appealing from several points
of view is likely to
be useless in the real-time environments for which CAN
was conceived. In many cases, in fact, the scheduling
policy must be selected on a per-stream basis, so that the

deadlines of the different objects which are defined in the
system are always respected. A very suitable solution is
to have a (usually small) number of priority classes to
which the different objects are assigned. The access
mechanism must guarantee the same QoS for all the
objects belonging to the same class. This means that all
the objects of a given class should experience similar
delays and they are granted the same amount of
bandwidth, though they still have precedence over the
objects belonging to the lower priority classes.

To define the concept of a MUST priority class
in a more formal way, let be the set of the object
identifiers in the network. Since it is assumed that the
underlying communication system is basically a CAN
network adopting standard 11-b identifiers I = {id|0 <=
id <= N-1}, where N = 2032 (or 2048 in newer
controllers). It is worth remembering that in CAN the
object identifier also specifies the priority of the frame,

Figure 6 Implementation scheme of a MUST controller
with eight priority classes

which is used in the arbitration phase to resolve the
collisions on the bus.

3.2 IMPLEMENTATION ISSUES

The simplest solution to implement the MUST

access scheme over a CAN network is to use the first k
bits of the identifier to encode the priority level of the
object, so that M=2k classes are made available. If
standard 11-b identifiers are used, up to 211-k different
objects are defined inside each group and the priority
level of an object id is given by p=|id√211-k |(where [x]
indicates the greatest integer lower than or equal to x).
For example, if one bit only is devoted to encode the
priority level, the classical scheme that is based on the

ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)

On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 945

availability of high and low priority frames are obtained.
Instead, in the case when CANopen is selected as the
application level protocol, a MUST system based on 16
different priority classes could be a more suitable
solution.

In fact, CAN open reserves the first 4 bits of the
identifier to encode the function code, while the
remaining 7 bits are devoted to the node address. In this
way, it is possible to achieve fair network behavior
irrespective of what address is actually assigned to each
node, while, for example, process data objects (PDOs,
used for the real-time control of devices) are kept at a
higher priority level than service data objects (SDOs,
devoted to nontime-critical operations).

In MUST, every node must keep a separate

register for each priority level, so as to store the value of
the mp parameter. If the encoding scheme described
above is adopted, each register mp is (11- k) -b-wide and
stores the part of the identifier which does not depend on
the priority level (i.e., the least significant bits). Since the
value -1 has to be managed too, the mp registers must be
able to store signed quantities represented on (12 - k)b.
In particular, Fig. 6(a) highlights the blocks involved in
deciding whether a frame can be sent in the current run
or if it has to wait for the next run. The other two
schemes, instead, show how the mp registers are updated
when either a frame is exchanged correctly [Fig. 6(b)] or
the bus is detected to be completely idle [Fig. 6(c)].

IV. CONCLUSIONS

Though CAN has many interesting features, in
heavy traffic conditions it may exhibit a quite unfair
behavior. In particular, it is not possible to provide the
same QoS to a given set of objects (this holds for both
real-time and nonreal-time exchanges), nor to ensure
deterministically bounded transmission delays in every
traffic condition. In this paper, a modification of the
basic medium access technique of the CAN protocol has
been introduced, which ensures a very fair behavior in all
operating conditions. In particular, it provides a number
of priority classes and, for each class, a round-robin
service policy is granted to the different communication
objects. The main advantage of MUST with respect to
other fairness control techniques which have been
proposed for CAN is that object identifiers do not have

to be reassigned dynamically, and hence it can easily be
used together with the currently available application-
level protocols which are based on CAN.

REFERENCES

[1] Road Vehicles—Interchange of Digital Information—Controller
Area Network for High-Speed Communication, Draft Amendment ISO
11898:1993/DAM 1, Feb. 1994.
[2] A. S. Tanembaum, Computer Networks, 3rd ed. Upper Saddle River,
NJ: Prentice-Hall, 1996, pp. 254–256.
[3] CAN open Application Layer and Communication Profile, CiA
Draft Standard DS301, Rev. 4.01, June 2000.
[4] K. Tindell, A. Burn, and J. Wellings, “Calculating Controller Area
Network (CAN) message response times,” Control Eng. Practice, vol. 3,
no. 8, pp. 1163–1169, Aug. 1995.
[5] K. Tindell, H. Hansson, and A.Wellings, “Analysing real-time
communications: Controller Area Network (CAN),” in Proc. Real-Time
Systems Symp., San Juan, PR, Dec. 1994, pp. 259–263.
[6] K. M. Zuberi and K. G. Shin, “Scheduling messages on controller
area network for real-time CIM applications,” IEEE Trans. Robot.
Automat., vol. 13, pp. 310–314, Apr. 1997.
[7] M. Di Natale, “Scheduling the CAN bus with earliest deadline
techniques,” in Proc. 21st IEEE Real-Time Systems Symp., Orlando,
FL, Nov. 2000, pp. 259–268.
[8] G. Cena and A. Valenzano, “A distributed mechanism to improve
fairness in CAN networks,” in Proc. WFCS’95, Workshop Factory
Communication Systems, Leysin, Switzerland, Sept. 1995, pp. 3–11.
[9] , “An improved CAN fieldbus for industrial applications,” IEEE
Trans. Ind. Electron., vol. 44, pp. 553–564, Aug. 1997.

