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ABSTRACT – Controller Area Network (CAN) is a 
real-time network that was initially conceived for 
automotive applications, but which is now becoming 
very popular as a fieldbus for automated factory 
environments because of its appealing features and 
low implementation costs. Controller Area Networks 
(CANs) are being used more and more today to 
support communications in real-time systems. 
However, under heavy traffic conditions the CAN 
access protocol may exhibit a quite unfair behavior, 
in particular, when the control applications require 
the same quality of service to be ensured to a number 
of different objects.  

 
In this paper, a new technique is proposed 

which is based on CAN and introduces few changes to 
the original protocol. Such a solution is able to ensure 
a very fair behavior, which resembles the one 
obtained in token based networks while maintaining, 
at the same time, the reduced access delays typical of 
CAN when operating in low traffic conditions. 
Furthermore, it preserves an optimum degree of 
compatibility with the existing devices and 
applications based on CAN. 
 

I INTRODUCTION 
 
 Controller Area Network has been adopted by 
industry as the standard network technology to transmit 
data for sensors and actuators. This is due its fast 
response and high reliability for applications. CAN[1] is 
a serial communication protocol that efficiently supports 
distributed real time control with the high level of 
security .By using CAN wiring complexity can be avoid 
also. A rugged serial bus designed for industrial 
environments. Introduced by Bosch in 1986 for in-

vehicle networks in cars, it is used in myriad applications 
including factory automation, building automation, 
aircraft and aerospace as well as in cars, trucks and buses. 
The CAN bus replaces bulky wiring harnesses with a 
two-wire differential wire.  
 

CAN provide services at layers 1 and 2 of the 
OSI model and uses a broadcast method for placing 
frames on the wire. CAN provide low-speed, fault-
tolerant transmission of 125 Kbps up to 40 meters, which 
can function over one wire if a short occurs. 
Transmission without fault tolerance is provided up to 1 
Mbps and 40 meters, and distances up to 1 km are 
achieved with bit rates of 50 Kbps. This 
interface/protocol was designed to allow 
communications within noisy environments. The CAN 
module is a communication controller, implementing the 
CAN 2.0 A/B protocol as defined in the BOSCH 
specification. The CAN protocol is an international 
standard defined in the ISO 11898. Beside the CAN 
protocol itself the conformance test for the CAN protocol 
is defined in the ISO 16845, which guarantees the 
interchangeability of the CAN chips. 
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Figure 1 Broadcast 

CAN is based on the “broadcast communication 
mechanism”, which is based on a message-oriented 
transmission protocol. Every message has a message 
identifier, which is unique within the whole network [3] 
since it defines content and also the priority of the 
message. It is easy to add stations to an existing CAN 
network without making any hardware or software 
modifications to the present stations as long as the new 
stations are purely receivers. This allows for a modular 
concept and also permits the reception of multiple data 
and the synchronization of distributed processes. In real-
time processing the urgency of messages to be 
exchanged over the network can differ greatly; a rapidly 
changing dimension, e.g. engine load, has to be 
transmitted more frequently and therefore with less 
delays than other dimensions e.g. engine temperature. 
The priorities are laid down during system design in the 
form of corresponding binary values and cannot be 
changed dynamically. The identifier with the lowest 
binary number has the highest priority. 
 
            Bus access conflicts are resolved by bit-wise 
arbitration of the identifiers involved by each station 
observing the bus level bit for bit. This happens in 
accordance with the wired-and-mechanism, by which the 
dominant state overwrites the recessive state. All those 
stations (nodes) with recessive transmission and 
dominant observation lose the competition for bus access. 
All those "losers" automatically become receivers of the 
message with the highest priority and do not re-attempt 
transmission until the bus is available again. The “CAN 
base frame” supports a length of 11 bits for the identifier 
(formerly known as CAN 2.0 A), and the “CAN 

extended frame” supports a length of 29 bits for the 
identifier (formerly known as CAN 2.0 B).  CAN base 
frame format. A CAN base frame message begins with 
the start bit called "Start Of Frame (SOF)", this is 
followed by the "Arbitration field" which consist of the 
identifier and the "Remote Transmission Request (RTR)" 
bit used to distinguish between the data frame and the 
data request frame called remote frame. The following 
"Control field" contains the "IDentifier Extension (IDE)" 
bit to distinguish between the CAN base frame and the 
CAN extended frame, as well as the "Data Length Code 
(DLC)" used to indicate the number of following data 
bytes in the "Data field". If the message is used as a 
remote frame, the DLC contains the number of requested 
data bytes. The "Data field" that follows is able to hold 
up to 8 data byte. The integrity of the frame is 
guaranteed by the following "Cyclic Redundant Check 
(CRC)" sum. The "Acknowledge (ACK) field" 
compromises the ACK slot and the ACK delimiter. The 
bit in the ACK slot is sent as a recessive bit and is 
overwritten as a dominant bit by those receivers, which 
have at this time received the data correctly. Correct 
messages are acknowledged by the receivers regardless 
of the result of the acceptance test. The end of the 
message is indicated by "End Of Frame (EOF)". The 
"Intermission Frame Space (IFS)" is the minimum 
number of bits separating consecutive messages. Unless 
another station starts transmitting, the bus remains idle 
after this.  

Unlike other bus systems, the CAN protocol does 
not use acknowledgement messages but instead signals 
errors immediately as they occur. For error detection the 
CAN protocol implements three mechanisms at the 
message level: 
 Cyclic Redundancy Check (CRC): The CRC 

safeguards the information in the frame by adding a 
frame check sequence (FCS) at the transmission end. 
At the receiver this FCS is re-computed and tested 
against the received FCS. If they do not match, there 
has been a CRC error.  

 Frame check: This mechanism verifies the structure 
of the transmitted frame by checking the bit fields 
against the fixed format and the frame size. Errors 
detected by frame checks are designated "format 
errors".  

 ACK errors: Receivers of a message acknowledge 
the received frames. If the transmitter does not 
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receive an acknowledgement an ACK error is 
indicated.  
The CAN protocol also implements two   
mechanisms for error detection at the bit level: 

 Monitoring: The ability of the transmitter to detect 
errors is based on the monitoring of bus signals. 
Each station that transmits also observes the bus 
level and thus detects differences between the bit 
sent and the bit received. This permits reliable 
detection of global errors and errors local to the 
transmitter.  

 Bit stuffing: The coding of the individual bits is 
tested at bit level. The bit representation used by 
CAN is "Non Return to Zero (NRZ)" coding. The 
synchronization edges are generated by means of bit 
stuffing. That means after five consecutive equal bits 
the transmitter inserts a stuff bit into the bit stream. 
This stuff bit has a complementary value, which is 
removed by the receivers.  

 
     If one or more errors are discovered by at least one 
station using the above mechanisms, the current 
transmission is aborted by sending an "error frame". This 
prevents other stations from accepting the message and 
thus ensures the consistency of data throughout the 
network. After transmission of an erroneous message 
that has been aborted, the sender automatically re-
attempts transmission (automatic re-transmission). Nodes 
may again compete for bus access.  The CAN protocol 
therefore provides a mechanism to distinguish sporadic 
errors from permanent errors and local failures at the 
station.  

On the bit-level (OSI level one, physical layer) 
CAN uses synchronous bit transmission. This enhances 
the transmitting capacity but also means that a 
sophisticated method of bit synchronization is required. 
The CAN protocol regulates bus access by bit-wise 
arbitration. The signal propagation from sender to 
receiver and back to the sender must be completed within 
one bit-time. For synchronization purposes a further time 
segment, the propagation delay segment, is needed in 
addition to the time reserved for synchronization, the 
phase buffer segments. The propagation delay segment 
takes into account the signal propagation on the bus as 
well as signal delays caused by transmitting and 
receiving nodes. 

Two types of synchronization are distinguished: 
hard synchronization at the start of a frame and 
resynchronization within a frame.  

 After a hard synchronization the bit time is 
restarted at the end of the sync segment. 
Therefore the edge, which caused the hard 
synchronization, lies within the sync segment of 
the restarted bit time.  

 Resynchronization shortens or lengthens the bit 
time so that the sample point is shifted 
according to the detected edge  
The basis for transmitting CAN messages and 

for competing for bus access is the ability to represent a 
dominant and a recessive bit value. This is possible for 
electrical and optical media so far. Also power line and 
wireless transmission is possible. For electrical media the 
differential output bus voltages are defined in ISO 
11898-2 and ISO 11898-3, in SAE J2411, and ISO 
11992 (see below). With optical media the recessive 
level is represented by "dark" and the dominant level by 
"light". The physical media most commonly used to 
implement CAN networks are a differentially driven pair 
of wired with common return.  The parameters of the 
electrical medium become important when the bus length 
is increased. Signal propagation, the line resistance and 
wire cross sections are factors when dimensioning a 
network. In order to achieve the highest possible bit rate 
at a given length, a high signal speed is required.  
 

II. REQUIREMENT OF THE ARCHITECTURE 
  
 The CAN protocol uses priority based packet 
transfer and there is no time sharing among between the 
device request.  If the highest priority is always want to 
transmit the data, the other devices which are requiring 
will not be honored.   To overcome this drawback a new 
approach is proposed in this project and it will work in 
any environmental condition. 
 

III. NEW PROTOCOL IMPLEMENTATION 
 

CAN relays on medium access control (MAC) 
which is based carrier-sense multiple-access (CSMA) [2] 
technique. CAN quite different from Ethernet networks. 
In CAN a priority is associated to each transmitted frame, 
which is used to resolve possible collisions so that this 
network can be used in real-time systems characterized 
by tight timing constraints. In CAN, data and 
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information are exchanged as communication objects (or, 
simply, objects), associated to identifiers that are used to 
tag each frame in the transmission phase. According to 
the protocol rules, the (numerically) lower the identifier 
of the frame is, the higher is the priority when competing 
to gain access to the shared communication medium. The 
rules by which a CAN node can access the shared 
communication medium are very simple: a frame can be 
transmitted when the state of the bus, which is monitored 
by each node, is found to be idle. A suitable arbitration 
[7,8] procedure based on the binary countdown 
technique ensures that, when two or more nodes collide, 
the contention is resolved by assigning the bus to the 
node which is transmitting the highest priority frame. If a 
transmission request is issued while the bus is busy, the 
requesting node waits until the bus turns to the idle state 
and then tries to send its frame. If several transmission 
requests are pending, a collision is unavoidable: in this 
case, the subsequent arbitration phase ensures that the 
node which is sending the object with the numerically 
lowest identifier wins the contention and keeps on 
transmitting. On their own, the losing nodes immediately 
interrupt their transmissions and switch to the receiving 
state.  

In fact, when bus utilization grows and 
approaches 100%, the nodes transmitting high-priority 
objects can hog all the available bandwidth, excluding 
the other stations from accessing the bus. A modification 
of the CAN protocol called medium utilization state 
tracking (MUST) is introduced here, which provides 
very fair behavior without requiring the basic protocol to 
be changed in depth. In low traffic conditions the MUST 
technique behaves much like a CSMA network, while, 
when the offered load increases, it achieves 
performances similar to the token-based networks. 

To overcome the drawbacks of CAN mentioned 
in the previous section, to analyze the behavior of such a 
network in more detail. In Fig. 2 sample traffic patterns 
are sketched for a CAN network in both low and heavy 
traffic conditions. Each frame has been labeled with the 
related identifier. Fig. 2(a) shows that, in low traffic 
conditions, nodes seldom collide and, even if they do, 
they very likely need not retry the transmission more 
than once (the probability of a second collision is 
negligible), so that very low delays (typical of CSMA 
networks) are experienced. 
  

  
Figure 2 Typical traffic patterns in CAN networks 

 
By contrast, when the load offered to the 

network grows higher the traffic pattern on the bus turns 
into a sequence of frame bursts [Fig. 2(b)], each one 
containing one or more frames which are sent one after 
the other without the bus becoming idle between any pair 
of adjacent transmissions. The basic idea to enforce fair 
behavior in a conventional CAN network is to modify 
the original protocol so as to limit the number of times 
each object can be sent inside any one of the bursts 
mentioned above. In this way, the length of each burst is 
upper bounded and the same occurs for the transmission 
delays, as happens in the token-based networks. A run as 
a burst of frames is assumed, each one characterized by a 
different identifier, which are exchanged over the 
network without the bus becoming idle between any two 
adjacent frame transmissions, as shown in below. 
 

 
Figure 3 Sample traffic pattern in MUST with runs 

highlighted 
 

The MUST access scheme operates according to 
very simple rules: in fact, they are exactly the same as 
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CAN, except that each object can be sent at most once in 
each run. Thus, the new protocol requires only one 
additional mechanism to detect an End of Run (EOR) 
condition. The easiest way to accomplish this task is by 
tracking the utilization state (either busy or idle) of the 
communication medium. In CAN, each frame 
transmission is followed by a period of time, called 
intermission (IMS), which consists of three recessive bits. 
After the intermission has completely elapsed, the bus is 
considered idle and each node can start transmitting a 
new frame, which begins with a start of frame (SOF) bit 
at the dominant level. For our purposes, when the bus is 
found recessive for a given additional time after the 
intermission, it is assumed to be completely idle. In 
practice, the concept of long intermission can be 
introduced, which consists of the conventional 
intermission field followed by an intermission extension 
(IMX) and can be used to denote an EOR condition, as 
shown in below. 

 

 
Figure 4 Sample frame format of MUST including the 

IMX 
 
Even though the intermission extension could 

include, in its simplest form, a single bit at the recessive 
level, robustness issues suggest making this field similar 
to the conventional intermission (i.e., three recessive 
bits). In this way, it is possible to detect an EOR 
condition by monitoring the state of the bus to find out 
when it becomes completely idle, with negligible effects 
on protocol complexity and with almost no penalties for 
communication efficiency. As stated previously, frames 
in a run have to appear in a strictly increasing identifier 
order, so as to improve network fairness. This 
requirement can be easily fulfilled by letting each node 
remember the identifier of the last frame which was 
exchanged on the bus (either read or written), for 
instance, by means of a suitable m register. The MUST 
mechanism can be described formally by means of the 
protocol automaton in figure below. 

 

 
Figure 5 Protocol automaton for the MUST protocol 

 
The automaton shows that a node can send a 

new frame in the current run if and only if its identifier is 
strictly greater than m, otherwise it has to wait for the 
next run. When an EOR condition is detected, the m 
register is set back to the negative value -1, so as to 
enable a new run to be started. In this case, in fact, every 
object can be sent again, irrespective of its identifier. It 
can be easily proven that all the frames which are 
waiting for transmission are ordered by the access 
mechanism described above and the shape of the traffic 
pattern on the bus effectively consists of a sequence of 
runs. As a consequence, MUST features a round-robin 
service policy, which resembles the one provided by 
many token-based networks and ensures a fair and 
deterministic behavior in a number of situations where 
conventional CAN is not able to satisfy such a 
requirement. 
 

Frame time depends only on the size of the 
frame and the bit rate adopted in the network, and its 
evaluation is a trivial issue. On the contrary, when an 
arbitrary message generation pattern is considered there 
is in general no upper bound for the queuing time, 
whatever the access mechanism adopted in the network. 
The queuing time is effectively reduced to zero and the 
transmission time can be evaluated very simply as the 
sum of the access time and the frame time [4]. Such an 
assumption fits in well with many hard-real-time 
systems: in fact, if a new value of an object becomes 
available before the old one has been delivered, then the 



ISSN (Online) : 2319 – 8753 
ISSN (Print)    : 2347 - 6710 

 

International Journal of Innovative Research in Science, Engineering and Technology 

An ISO 3297: 2007 Certified Organization,          Volume 3, Special Issue 1, February 2014 

International Conference on Engineering Technology and Science-(ICETS’14) 
 

On 10th & 11th February Organized by 
 

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India 

Copyright to IJIRSET                                      www.ijirset.com                                                                 944 

deadline of the related data has certainly been exceeded, 
thus violating the timing constraints of the controlling 
application. To evaluate the worst case delay a frame can 
experience in a network based on the MUST technique, 
it should be noted that the longest permitted run 
corresponds to a sequence of frames, being the maximum 
number of data streams (i.e., different objects) which can 
be defined in the system. In fact, according to the MUST 
access rules, each object (characterized by a unique 
identifier) can be sent at most once per run. Two 
different situations are 
 
 I > j: In this case, object can be sent in the current 

run. The transmission of object can be delayed by 
the objects whose identifier is strictly lower than 
(because they have a higher priority, according to 
the CAN protocol) but strictly higher than 
(because of the MUST access rules).  

 I < j: In this case, object cannot be sent in the 
current run. Hence, it has to wait for the beginning 
of the next run. The delay which object can incur 
is given by the sum of the time taken to complete 
the current run (at most N-j frame times), the 
duration of IMX (few bit times) and the time spent 
in the next run waiting for higher priority frames 
to be sent (at most i frame times). This gives as a 
result a maximum access delay equal to N+i-j 
frame times. 

A slightly different treatment is reserved for the 
(unusual) case when other nodes start transmitting at 
exactly the same time as the transmission of object 
begins, after each transmitting node detected a bus idle 
(or completely idle) condition. 
 i is the smallest value among the identifiers of all 

the objects involved in the collision: in this case, 
object is sent immediately. 

 i is not the smallest value: this condition is similar 
to case 1 described above. 

 
3.1 MUST MECHANISM WITH SEVERAL 
PRIORITY CLASSES 

 
The round-robin service policy provided by the 

MUST technique, though appealing from several points 
of view is likely to  
be useless in the real-time environments for which CAN 
was conceived. In many cases, in fact, the scheduling 
policy must be selected on a per-stream basis, so that the 

deadlines of the different objects which are defined in the 
system are always respected. A very suitable solution is 
to have a (usually small) number of priority classes to 
which the different objects are assigned. The access 
mechanism must guarantee the same QoS for all the 
objects belonging to the same class. This means that all 
the objects of a given class should experience similar 
delays and they are granted the same amount of 
bandwidth, though they still have precedence over the 
objects belonging to the lower priority classes.  

To define the concept of a MUST priority class 
in a more formal way, let be the set of the object 
identifiers in the network. Since it is assumed that the 
underlying communication system is basically a CAN 
network adopting standard 11-b identifiers I = {id|0 <= 
id <= N-1}, where N = 2032 (or 2048 in newer 
controllers). It is worth remembering that in CAN the 
object identifier also specifies the priority of the frame,  

Figure 6 Implementation scheme of a MUST controller 
with eight priority classes 

 
which is used in the arbitration phase to resolve the 
collisions on the bus. 

 
3.2 IMPLEMENTATION ISSUES 

 
The simplest solution to implement the MUST 

access scheme over a CAN network is to use the first k 
bits of the identifier to encode the priority level of the 
object, so that M=2k classes are made available. If 
standard 11-b identifiers are used, up to 211-k different 
objects are defined inside each group and the priority 
level of an object id is given by p=|id√211-k |(where [x] 
indicates the greatest integer lower than or equal to x). 
For example, if one bit only is devoted to encode the 
priority level, the classical scheme that is based on the 
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availability of high and low priority frames are obtained. 
Instead, in the case when CANopen is selected as the 
application level protocol, a MUST system based on 16 
different priority classes could be a more suitable 
solution.  

In fact, CAN open reserves the first 4 bits of the 
identifier to encode the function code, while the 
remaining 7 bits are devoted to the node address. In this 
way, it is possible to achieve fair network behavior 
irrespective of what address is actually assigned to each 
node, while, for example, process data objects (PDOs, 
used for the real-time control of devices) are kept at a 
higher priority level than service data objects (SDOs, 
devoted to nontime-critical operations).  

 
In MUST, every node must keep a separate 

register for each priority level, so as to store the value of 
the mp parameter. If the encoding scheme described 
above is adopted, each register mp is (11- k) -b-wide and 
stores the part of the identifier which does not depend on 
the priority level (i.e., the least significant bits). Since the 
value -1 has to be managed too, the mp registers must be 
able to store signed quantities represented on (12 - k)b. 
In particular, Fig. 6(a) highlights the blocks involved in 
deciding whether a frame can be sent in the current run 
or if it has to wait for the next run. The other two 
schemes, instead, show how the mp registers are updated 
when either a frame is exchanged correctly [Fig. 6(b)] or 
the bus is detected to be completely idle [Fig. 6(c)]. 

 
 

IV. CONCLUSIONS 
 

Though CAN has many interesting features, in 
heavy traffic conditions it may exhibit a quite unfair 
behavior. In particular, it is not possible to provide the 
same QoS to a given set of objects (this holds for both 
real-time and nonreal-time exchanges), nor to ensure 
deterministically bounded transmission delays in every 
traffic condition. In this paper, a modification of the 
basic medium access technique of the CAN protocol has 
been introduced, which ensures a very fair behavior in all 
operating conditions. In particular, it provides a number 
of priority classes and, for each class, a round-robin 
service policy is granted to the different communication 
objects. The main advantage of MUST with respect to 
other fairness control techniques which have been 
proposed for CAN is that object identifiers do not have 

to be reassigned dynamically, and hence it can easily be 
used together with the currently available application-
level protocols which are based on CAN. 
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