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ABSTRACT: In this work, the practical problem of frequent-itemset discovery in data-stream environments which 

may suffer from data overload. The main issues include frequent-pattern mining and data-overload handling. Therefore, 

a mining algorithm together with Separate dedicated overload-handling mechanisms is proposed. The algorithm DBCA 

(Dynamic Base Combinatorial Algorithm) extracts basic information from streaming data and keeps the information in 

its data structure.  

 

The DBCA algorithm extracts base information from data streams in a dynamic way. More specifically, it 

keeps base information on a data stream with the size concerning the average length n of transactions. It could 

effectively manage data overload with the overload-handling mechanisms. Our results may leads to a possible solution 

for sequential frequent-pattern mining in dynamic streams, the Sliding window by pruning the excess of incoming data 

and dealing only with the trimmed data, not by processing on the full amount of incoming data. Depending on how 

overloading data can be trimmed, there may be various policies on load shedding, and we have described three such 

policies. The proposed policies, although possess different properties, have all been verified by the experiment to be 

effective. 
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I. INTRODUCTION 

 

Nowadays many commercial applications have their data presented in the form of continuously transmitted 

stream, namely data streams. In such environments, data is generated at some end nodes or remote sites and received by 

a local system (to be processed and stored) with continuous transmission. It is usually desirable for decision makers to 

find out valuable information hidden in the stream. Data-stream mining is just a technique to continuously discover 

useful information or knowledge from a large amount of running data elements. Like data mining in traditional 

databases, the subjects of data-stream mining mainly include frequent itemsets/patterns, association rules (Agrawal and 

Srikant, 1994), sequential rules, classification, and clustering. Through the data-stream mining process, knowledge 

contained inside the stream can be discovered in a dynamic way. 

 

Data mining from data streams has three kinds of time models (or temporal spans) (Zhu and Shasha, 2002). 

The first one is landmark window model, in which the range of mining covers all data elements that have ever been 

received. The second one is damped/fading window model, in which each data element is associated with a variable 

weight, and recent elements have higher weights than previous ones. The third one is sliding window model, in which a 

fixed-length window which moves with time is given, and the range of mining covers the recent data elements 

contained within the window. 

 

  Due to the fact that early received data elements may become out of date and/or insignificant, i.e.,the 

timeliness factor, among the three models, the sliding window model is more appropriate for many data-stream 

applications such as finance, sales, and marketing. A data-stream mining system may suffer the problem of data 
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overload, just like the case of over-demand electricity to a power supply system. A data stream is usually dynamic and 

its running speed may change with time. When the data transmission rate of the data-stream source exceeds the data 

processing rate of the mining algorithm of a mining system, e.g., during a peak period, the system is overloaded with 

data and thus unable to handle all incoming data elements properly within a time-unit. Furthermore, an overloaded 

system may work abnormally or even come into a crash. Accordingly, it is essential for a data-stream mining system to 

adequately deal with data overload and/or spikes in volume.  

 

In this paper, we propose a load-controllable DBCA mining algorithm for discovering frequent patterns in 

transactional data streams. The mining algorithm works on the basis of combinatorial approximation (Jea and Li, 

2009). To address the possible case of peak dataload at times, two dedicated overload-handling mechanisms are 

designed for the algorithm to manage overload situations with their respective means. With the load-controllable 

ability, a mining system with the proposed algorithm is able to work normally during high-data-load periods. Besides, 

according to our experimental data, the mining results (after overload handling) still possess reasonable quality in term 

of accuracy. 

 

The rest of this paper is organized as follows. In Section 2, related work regarding data-stream frequent-pattern 

mining and data-overload handling is described. Section 3 gives the symbol representation, problem definition, and 

goal of this research. In Section 4, a mining algorithm together with two overload-handling mechanisms is proposed 

and explained in detail. Section 5 presents the experimental results with analyses. In Section 6, discussions are given on 

the overload-handling mechanisms. Finally, Section 7 concludes this work 

 

II. RELATED WORK 

 

Frequent-pattern mining from data streams is initially limited to singleton items (e.g., Charikar et al., 2004; 

Fang et al., 1998). Lossy Counting (Manku and Motwani, 2002) is the first practical algorithm to discover frequent 

itemsets from transactional data streams.This algorithm works under the landmark window model. In addition to the 

minimum-support parameter (ms), Lossy Counting also employs an error-bound parameter, ε, to maintain those 

infrequent itemsets having the potential to become frequent in the near future. 

 

The Lossy Counting processes the stream data batch by batch, and each batch includes bucket(s) of 

transactions. With the use of parameter ε, when an itemset is newly found, Lossy Counting knows the upper-bound of 

count that itemset may have before it has been monitored. As a result, the error in itemset‟s frequency count is limited 

and controllable. According to the experiments conducted by Manku and Motwani (2002), Lossy Counting can 

effectively find frequent itemsets over a transactional data stream. This algorithm is a representative of the ε-deficient 

mining methods and has many related extensions. For example, based on the estimation mechanism of Lossy Counting, 

a sliding window method for finding recently frequent itemsets in a data stream is proposed by Chang and Lee (2004). 

  A different type of method is to process on stream elements within a limited range and offer no-false mining 

answers. DSTree (Leung and Khan, 2006) is a representative approach of one such type, which is designed for exact 

(stream) mining of frequent itemsets under the sliding window model. Given a sliding window, DSTree uses its tree 

structure for capturing the contents of transactions in each batch of data within the current sliding window.  

 

More specifically, DSTree enumerates all itemsets (of any length) having ever occurred in transactions within 

the current window and maintains them fully in its tree structure. The update of tree structure is performed on every 

batch, while the mining task is delayed until it is needed. According to the experimental results given by Leung and 

Khan (2006), mining from DSTree achieves 100% accuracy (since all itemsets having ever occurred are stored and 

monitored). However, because this method needs to enumerate every itemset in each of the transactions, its efficiency 

is badly affected by the great computation complexity. As a result, it can hardly manage with a data stream consisting 

of long transactions.Besides DSTree, there are other methods belonging to the type of exact stream mining. Li and Lee 

(2009) proposed a bit-sequence based, one-pass algorithm, called MFI-TransSW, to discover frequent itemsets from 

data-stream elements within a transaction-sensitive sliding window. Every item of each transaction is encoded in a bit-

sequence representation for the purpose of reducing the time and memory necessary for window sliding; to slide the 

window efficiently, MFI-TransSW uses the left bit-shift technique for all bit-sequences. In addition, Tanbeer et al. 

(2009) proposed an algorithm called CPS-tree, which is closely related to DSTree, is proposed to discover the recent 
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frequent patterns from a data stream over a sliding window. Instead of maintaining the batch information (of the sliding 

window) at each node of the tree structure (as DSTree does), CPS-tree maintains it only at the last node of each path to 

reduce the memory consumption. The authors also introduce the concept of dynamic tree restructuring to produce a 

compact frequency-descending tree structure during runtime.  

 

Another type of method is to perform the mining task, i.e., discover frequent itemsets, through a support 

approximation process. One feasible approach is to apply the idea of Inclusion–Exclusion Principle in combinatorial 

mathematics (Liu, 1968), whose general form is shown in Eq. (1), to data-mining domain for support calculation, and 

further apply the theory of Approximate Inclusion–Exclusion (Linial and Nisan, 1990) for approximate-count 

computation. This mining approach is called CA (combinatorial approximation).  

 

The DSCA algorithm (Jea and Li, 2009) is a typical example of such an approach. DSCA operates under the 

landmark window model and monitors all itemsets of lengths 1 and 2 existing in the data stream. It performs the mining 

task by approximating the counts of longer itemsets (based on the monitored itemsets) and returning the frequent ones 

as the mining outcome. According to the experimental data given by Jea and Li (2009), the performance of DSCA is 

quite efficient. Besides DSCA, the SWCA algorithm (Li and Jea, 2011) is also an example of CA-based approach. This 

method is under the sliding window model and has made an effort to improve the accuracy of support approximation. 

 

III.   PROPOSED METHODOLOGY 

 

Our FP-tree-based DBCA mining adopts a pattern-fragment growth method to avoid the costly generation of a 

large number of candidate sets, and a partitioning-based, divide-and-conquer method is used to decompose the mining 

task into a set of smaller tasks for mining confined patterns in conditional databases, which dramatically reduces the 

search space. Our DBCA performance study shows that the FP-growth method is efficient and scalable for mining both 

long and short frequent patterns, and is about an order of magnitude faster than uses a technique to quickly  prune 

candidate frequent item sets in the item set lattice.  The technique gathers Pattern information for a node used to  find 

the next node during depth-first mining in the lattice.  Items are dynamically reordered based on the tail  information. 

DBCA is about 10 times faster than UPS and others FP generation algorithms. 

 

INPUT TRANSACTION 

a. The input should contain large set of transaction and should be divided into batches 

b. Each batch should contain some set of transaction 

c. Each batch of transaction should be fed into the sliding window (w0 and w1) 

d. E.g., if there are 100 transaction means, it can be divided into 10 batches, so that each batch contains 10 

transaction  

 

 

 

 

 

 

 

 

 
 

.  

 

 

 

 

 

IV. DBCA BASED SLIDING WINDOW 

 

 

 

  100 transactions 

Batch 1  10 

transaction 

Batch2  10 

transaction 

Batch 10  10 

transaction 
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a. The sliding window concept is used here 

b. The total window size is set as „w‟ 

c. The window should be divided into two sub-windows „w0‟ and „w1‟ 

d. The sub-windows should be dynamically change by using the formula 

      

                       calculate „n0            є𝑐𝑢𝑡     calculate‟n1‟                 

 

W0 W1 

  

 

                                            W  

e. Here „n0‟ denotes the maximum length of an itemset in „W0‟ (eg., consider there is 1
st
 batch of 

transaction with its corresponding itemsets in „W0‟. Among those transaction, if the maximum length of 

an itemset is 4, which is {milk, bread, cheese, butter} ). „n0‟=4. 

Then „n1‟ denotes the maximum length of an itemset in „W1‟ (eg., consider there is 2
nd

 batch of  

transaction  with its corresponding itemsets in „W1‟.Among those transaction, if the maximum length of 

an itemset is 3, which is {milk, bread, cheese}. „n1‟=3 

             

  „n‟= „n0‟+ „n1‟ 

Step1: calculate „n0‟and „n1‟ (max.. length of itemset in „w0‟ and „w1‟) 

Step 2: calculate harmonic mean „m‟ 

        m = 
1

1

𝑛0
+

1

𝑛1

 

Step 3: calculate the approximate confidence value „δ´ 

 

δ´= 
 δ

𝑛
  (consider δ= 40% or 0.4)   n=n0+n1 

 

Step 4: calculate „є𝑐𝑢𝑡 ‟ in which it is used for partitioning the sub-windows dynamically. 

 

 

 є𝑐𝑢𝑡 =  
1

2𝑚
× 𝑙𝑛

4

δ´
   

Let us consider the sliding window size „W‟=20. 

 

Initially, we have to fix the „W0‟ size as constant (eg., W0=10 or 11 or anything) and it should vary dynamically for 

remaining set of transaction. It should be user defined 

 

First, the dataset enters the sliding window. At beginning W0=10, so that only the first batch will be stored in W0 and 

the next batch will be stored in „W1‟ 

From „W0‟ and „W1‟, we have to calculate „n0‟ and „n1‟ and є𝑐𝑢𝑡  

We have to calculate the candidate-1 itemset and candidate-2 itemset for „W0‟ and should be stored as „BASE 

INFORMATION‟ (ie., base.xls) 

Once „W0‟ finished finding its base information, then the 1
st
 batch of transaction in „W0‟ should be removed and stored 

in another database (ie., remove.xls). Then the next batch of transaction will be stored in „W0‟  

Now we have to calculate „ є𝑐𝑢𝑡 ‟ for „W1‟ and new „W0‟ based on „n1‟ and new „n0‟.Once „W1‟ have finished finding 

its base information, the values should be updated in the same base information (ie., base.xls) and then the current 

batch of transaction in „W1‟ should be removed and stored in remove.xls and next set of transaction should be stored in 

„W1‟This process should continue until the end of the dataset. 
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V. DBCA MODULES  

 

Base Information Analysis  

In the base information analysis, it can mine the complete set of frequent itemsets, based on the completeness 

of patterns to be mined: we  can distinguish the following types of frequent itemset  mining, given a minimum support 

threshold the co-efficient, which refers to the variety of items, including first or most significant itemset .the 

combinatorial  represents the itemset  „j‟ represents the length of an itemset. If the length of an itemset is 2(j=2) , it 

contains 1-itemset and 2-itemset (i=1,2) „m‟ represents the target itemset length, m=k+1.Here „m‟ denotes the itemset 

length that we are going to find the approximate count. (eg., if k=2, m=3) „k‟ represents the base information size. In 

the base information, if k=2 means, it denotes that, it contains 1-itemset and 2-itemset. 𝑎𝑖𝑗  represents the ith itemset of 

jth itemset to use for finding approximation count. 
 

Approximation Count Calculation 

 In this module is to generate the maximal frequent  itemsets with minimum effort. In place of generating  

candidates for determining maximal frequent itemsets  as done in other methods, this module adapt the  concept of 

partitioning the data source into segments  and then mining the segments for maximal frequent  itemsets. Additionally, 

it reduces the number of scans over the transactional data source to only two. Moreover, the time spent for candidate 

generation is eliminated. This algorithm involves the following steps to determine the MFS from a data source: 

1. Segmentation of the transactional data source.  

2. Prioritization of the segments. 

3. Mining of segments. 

 

Frequent Item list Generation 

This module to find frequent itemsets using candidate generation, the process of generating candidate itemsets 

is done using a depth-first search, and the process can be represented as a candidate itemset tree. With each step down 

the tree, a single item is extended onto an itemset. As the itemsets grow larger and larger, the percentage of customers 

who have the itemset, or the support %, will grow smaller and smaller. Eventually, this support value will go below the 

minimum support required for an itemset to be deemed frequent. it looking at the lexicographic tree, it is possible to 

draw a line that crosses all points at which an occurrence of an itemset being extended goes from frequent to 

infrequent. All itemsets directly above this line are termed the maximal frequent itemsets. By the DBCA principle, no 

itemset extensions below this line can be frequent since they all contain other itemsets within them that were found to 

be infrequent. 

 

Skip and Complete Technique 

This module is to stores the transactional database as a series of vertical bitmaps, where each bitmap 

represents an itemset in the database and a bit in each bitmap represents whether or not a given customer has the 

corresponding itemset. Initially, each bitmap corresponds to a 1-itemset, or a single item. The itemsets that are checked 

for frequency in the database become recursively longer and longer, and the vertical bitmap representation works 

perfectly in conjunction with this itemset extension. For example, the bitmap for the itemset (a,b) can be constructed 

simply by performing an AND operation on all of the bits in the bitmaps for (a) and (b). Then, to count the number of 

customers that have (a,b), all that needs to be done is count the number of one bits in the (a,b) bitmap equals the 

number of customers who have (a,b). Clearly, the bitmap structure is ideal for both candidate itemset generation and 

support counting. 

 

Group Count Technique 

This module evaluates the performance of DBCA with the load shedding mechanism during data overloading 

situations. The three proposed policies for the mechanism are separately tested and then compared together. Both the 

normal DBCA (that is, without load-shedding operation) and Lossy Counting (which has no load-shedding function) 

are also tested as the control group for confirming the effects of load shedding. 

VI. CONCLUSION 
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In real-life data streams, the data transmission rate usually varies with time; at times it may beyond the data 

processing capability of a mining algorithm/system, which leads to the serious situation of data overload. A key 

contribution of this paper is to provide users with a feasible solution to frequent-pattern discovery in dynamic data 

streams which are prone to data overload. More specifically, a count approximation-based mining algorithm, DBCA, 

together with two dedicated mechanisms for overload management, is described and proposed. The DBCA algorithm 

extracts synopsis from received stream elements as base information, and carries out the mining task when requested 

through an approximating process. One remarkable feature of DBCA is that it can maintain dynamical-sized base 

information according to different(batches of) received data. The two mechanisms, namely processing acceleration and 

data-load shedding, are prepared for possible data overload situations. By running one of the mechanisms when the 

buffer is overloaded with data, DBCA could cope with the overload by means of either increasing its throughput or 

decrease the data volume. Nevertheless, so long as data overload is not the common case, that is, it may take place 

sometimes but not all the time, a mining system with our load-controllable method could operates normally under 

different data-load degrees. In other words, the system will possess the nice feature of durability. 
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