
Volume 3, No. 6, June 2012

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 64

AN IMPROVED ROUND ROBIN CPU SCHEDULING ALGORITHM

Manish Kumar Mishra
*1

, Abdul Kadir Khan
2

*1Department of Information Technology, Haramaya University, Dire Dawa, Ethiopia

mishrasoft1@gmail.com1
2Department of Computer Science, Haramaya University, Dire Dawa, Ethiopia

qadirforu@gmail.com2

Abstract: One of the most important components of the computer resource is the CPU. CPU scheduling involves a careful examination of pending

processes to determine the most efficient way to service the requests. CPU scheduling is the basis of multiprogrammed operating systems. Most CPU
scheduling algorithms concentrate on maximizing CPU utilization and throughput and minimizing turnaround time, waiting time, response time and
number of context switching for a set of requests. Some of the popular CPU scheduling algorithms are First-Come-First-Served (FCFS), Shortest Job
First (SJF), Priority Scheduling and Round Robin (RR). FCFS is the simplest form of CPU scheduling algorithm. This algorithm is simple to
implement, but it generally does not provide the fastest service. Round Robin being the most popular choice in time shared system, but it may not be
suitable for real time systems because of larger waiting time, turnaround time and more number of context switches. This paper describes an
improvement in RR. A simulator program has been designed and tested the Improved Round Robin (IRR). After improvement in RR it has been

found that the waiting time and turnaround time have been reduced drastically.

Keywords: CPU Scheduling, Round Robin Scheduling, Burst Time, Turnaround Time, Waiting Time, Response Time, Context Switch, Time
Quantum.

INTRODUCTION

In multiprogrammed computing systems, inefficiency is

often caused by improper use of CPU. In multiprogramming

systems, multiple processes are being kept in memory for

maximum utilization of CPU [1]. CPU utilization can be

maximized by switching CPU among waiting processes in

the memory and running some process all the time [2].

Which process should be selected next for service, is an

important question, because it affects the effectiveness of the

service. The main aim of the CPU scheduling algorithms is

to maximizing CPU utilization and throughput and

minimizing turnaround time, waiting time, response time and
number of context switching for a set of requests. This study

focuses on improving the effectiveness of Round Robin CPU

scheduling algorithm.

Performance Parameters:

A currently running program is called a process. The
processes waiting to be assigned to a processor are put in a

queue called ready queue. To use CPU effectively, it should

be busy as much as possible. Short Term Scheduler is the

operating system component that selects a waiting process

from the ready queue and allocates CPU to that process

whenever CPU becomes idle [2]. The time for which a

process uses the CPU is known as burst time. Arrival Time

is the time at which a process joins the ready queue.

Throughput is the number of processes that are completed

per unit of time. Turnaround time is the total time taken by a

process from the time of submission to the time of

completion of the process. Waiting time of a process is the
total time spent by the process waiting in the ready queue.

The number of times CPU switches from one process to

another is known as context switch. The CPU scheduling

algorithms focus on reducing the waiting time by scheduling

the processes in an effective manner.

CPU Scheduling Algorithms:

In multi-programmed operating systems CPU scheduling

plays a fundamental role by switching the CPU among

various processes [2]. CPU scheduling algorithms are used to

allocate the CPU to the processes waiting in the ready queue.

Some of the popular CPU scheduling algorithms are First-

Come-First-Served (FCFS), Shortest Job First (SJF), Priority

Scheduling and Round Robin (RR). FCFS is the simplest

form of CPU scheduling algorithm. In this scheduling

algorithm, the process that arrives first in ready queue served

first, so the name First-Come-First-Served. The average
waiting time in FCFS is quite long [2]. In Shortest Job First

(SJF) algorithm, process from the ready queue that has

shortest CPU burst time will execute first. If two processes

are having same CPU burst time and arrival time, then FCFS

procedure is followed. In SJF average waiting time

decreases. Priority scheduling algorithm allocates the CPU to

the higher priority process from the ready queue. In Round

Robin (RR), a small unit of time quantum is given to each

process present in the ready queue which maintains the

fairness factor. In this paper we have proposed an

improvement in RR to reduce the waiting time and
turnaround time.

RELATED WORK

In the recent years, a number of CPU scheduling mechanisms

have been developed for predictable allocation of processor.
An Improved Round Robin Scheduling Algorithm for CPU

Scheduling [1] allocates the time quantum to all the process

Manish Kumar Mishra et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 64-69

© JGRCS 2010, All Rights Reserved 65

only in first cycle. After executing all the processes once,

they use SJF to select next process from the ready queue.

Self-Adjustment Time Quantum in Round Robin Algorithm

[3] is based on a new approach called dynamic time

quantum, in which time quantum is repeatedly adjusted

according to the burst time of the running processes.

Dynamic Quantum with Readjusted Round Robin

Scheduling Algorithm [4] uses the job mix order for the

algorithm in [3]. Mixed Scheduling (A New Scheduling

Policy) [5], uses the job mix order for non preemptive

scheduling FCFS and SJF. According to job mix order, from
a list of N processes, the process which needs minimum CPU

time is executed first and then the highest from the list and so

on till the nth process. A new weighting technique is

introduced for CPU Schedulers in Burst Round Robin (BRR)

[6]. Here shorter jobs are given more time, so that processes

having shorter jobs are cleared from the ready queue in a

short time span. Debashree Nayak et. al. [7] did the similar

work as [3] [4]. They assign optimal time quantum to each

process after every cycle of execution. Optimal time

quantum is the average of highest CPU burst time and the

median. In [8] a new CPU scheduling algorithm is presented.

This algorithm schedules the running of processes according

to three parameters of CPU burst time, I/O service time, and

priority of processes. This algorithm selects and runs the

desired processes through adaptation. In this algorithm, the

priority of processes increases with time, and no process

encounters starvation. A new fare-share scheduling with

weighted time slice [9] assigns a weight to each process and

the process having the least burst time is assigned the largest

weight. The time quantum is calculated dynamically, using

weighted time slice method and then the processes are
executed. Algorithm in [10] calculates the original time slice

suited to the burst time of each processes and then dynamic

ITS (Intelligent Time Slice) is found out in conjunction with

the SRTN algorithm [2]. Algorithm in [11] is improved by

using dynamic time quantum and multi cyclic time quantum.

A New Proposed Two Processor Based CPU Scheduling

Algorithm with Varying Time Quantum for Real Time

Systems [12] uses two processors, one is solely dedicated to

execute CPU-intensive processes and the other CPU is

dedicated to executed I/O-intensive process. This gives better

result in a two processor environment than [4]. In [13] the
average of the burst time of the processes is calculated after

every cycle and allocated as dynamic time quantum. In Fair

Priority Round Robin with Dynamic Time Quantum [14], the

processes have been scheduled by giving importance to both

the user priority and shortest burst time priority. A new

calculated factor based on both user priority and the burst

time priority, decides the individual time quantum for each

process.

IRR CPU SCHEDULING ALGORITHM

The improved Round Robin (IRR) CPU scheduling

algorithm works similar to Round Robin (RR) with a small

improvement. IRR picks the first process from the ready

queue and allocate the CPU to it for a time interval of up to

1 time quantum. After completion of process’s time

quantum, it checks the remaining CPU burst time of the

currently running process. If the remaining CPU burst time

of the currently running process is less than 1 time quantum,

the CPU again allocated to the currently running process for

remaining CPU burst time. In this case this process will

finish execution and it will be removed from the ready

queue. The scheduler then proceeds to the next process in

the ready queue. Otherwise, if the remaining CPU burst time

of the currently running process is longer than 1 time
quantum, the process will be put at the tail of the ready

queue. The CPU scheduler will then select the next process

in the ready queue.

Following is the proposed IRR CPU scheduling algorithm

Step 1. START

Step 2. Make a ready queue of the Processes say

REQUEST.

Step 3. Do steps 4, 5 and 6 WHILE queue REQUEST

becomes empty.

Step 4. Pick the first process from the ready queue and
allocate the CPU to it for a time interval of up to 1

time quantum.

Step 5. If the remaining CPU burst time of the currently

running process is less than 1 time quantum then

allocate CPU again to the currently running process

for remaining CPU burst time. After completion of

execution, removed it from the ready queue and go

to step 3.

Step 6. Remove the currently running process from the

ready queue REQUEST and put it at the tail of the

ready queue.
Step 7. END

Illustration:

Considering a ready queue with four processes P1, P2, P3

and P4 arriving at time 0 with burst time 15, 7, 28 and 20

respectively. Time quantum (TQ) has been assumed 10

milliseconds (ms). Our proposed IRR CPU scheduling
picks the first process P1 from the ready queue and allocate

the CPU to it for a time interval of 10 ms. After executing

P1 for 10 ms, the remaining CPU burst of P1 is 5 ms. Since

the remaining CPU burst time of P1 is less than the TQ,

CPU will be allocated again to P1 for a time interval of 5

ms. P1 has finished execution, it will be removed from the

ready queue. Next process in the ready queue is P2 with 7

ms CPU burst time. CPU will be allocated to P2 for a time

interval of 7 ms. P2 will finish execution and it will be

removed from the ready queue. Next process in the ready

queue is P3 with 28 ms CPU burst time. CPU will be

allocated to P3 for a time interval of 10 ms. Since the
remaining CPU burst time of P3 is not less than the TQ,

CPU will be allocated to P4 for a time interval of 10 ms.

Remaining CPU burst of P4 is 10 and it is not less than the

TQ. After first cycle the processes remaining in the ready

queue are P3 and P4 with remaining burst time 18 and 10

respectively. The first process P3 will be selected from the

Manish Kumar Mishra et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 64-69

© JGRCS 2010, All Rights Reserved 66

ready queue for execution for a time interval of 10 ms. Since

the remaining CPU burst time of P3 is less than the TQ,

CPU will be allocated again to P3 for a time interval of 8

ms. P3 has finished execution, it will be removed from the

ready queue. Next process in the ready queue is P4 with

remaining CPU burst time 10 ms. CPU will be allocated to

P4 for a time interval of 10 ms. P4 has finish execution and

it will be removed from the ready queue. The waiting time is

0 ms for P1, 15 ms for P2, 32 ms for P3 and 50 ms for P4,

The average waiting time is 24.25 ms. Using the same set of

process with same arrival and CPU burst times, the average
waiting time is 30.25 ms in RR. The average turnaround

time is 41.75 in IRR and 47.75 in RR.

EXPERIMENTAL ANALYSIS

Assumptions:

To evaluate the performance, we assumed that the

environment where all the experiments are performed is a

single processor environment and all the processes are

independent. All the processes have equal priority. All the

attributes like burst time, number of processes and the time
slice of all the processes are known before submitting the

processes to the processor. The context switching time is

equal to zero i.e. there is no context switch overhead

incurred in switching from one process to another. All

processes are CPU bound. No processes are I/O bound. The

time quantum is taken in milliseconds.

Experiments Performed:

For performance evaluation of our proposed IRR algorithm,

we have taken two different cases. In first case arrival time
has been considered zero and CPU burst time has been taken

in increasing, decreasing and random orders. In second case

arrival time has been considered non zero and CPU burst

time has been taken in increasing, decreasing and random

orders.

CASE 1 - Zero Arrival Time:

In this case arrival time has been considered zero and CPU

burst time has been taken in increasing, decreasing and

random orders. Time quantum is 10 milliseconds.

CPU Burst Time in Increasing Order: We consider the

ready queue with five processes P1, P2, P3, P4 and P5

arriving at time 0 with burst time 5, 12, 20, 26 and 34

respectively. The comparison result of RR and proposed

IRR are shown in Table 1. Fig. 1 and Fig. 2 show the Gantt

chart representation of RR and IRR respectively.

Table 1. Comparison of RR and IRR

Algorithm Average Waiting

Time (ms)

Average Turnaround

Time (ms)

RR 38.4 57.8

IRR 30.4 49.8

Figure 1. Gantt chart representation of RR

Figure 2. Gantt chart representation of IRR

CPU Burst Time in Decreasing Order: We consider the

ready queue with five processes P1, P2, P3, P4 and P5

arriving at time 0 with burst time 34, 26, 20, 12 and 5

respectively. The comparison result of RR and proposed IRR

are shown in Table 2. Fig. 3 and Fig. 4 show the Gantt chart

representation of RR and IRR respectively.

Table 2. Comparison of RR and IRR

Algorithm Average Waiting

Time (ms)

Average Turnaround

Time (ms)

RR 58 77.4

IRR 49 68.4

Figure 3. Gantt chart representation of RR

Manish Kumar Mishra et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 64-69

© JGRCS 2010, All Rights Reserved 67

Figure 4. Gantt chart representation of IRR

CPU Burst Time in Random Order: We consider the ready
queue with five processes P1, P2, P3, P4 and P5 arriving at

time 0 with burst time 20, 34, 5, 12 and 26 respectively. The

comparison result of RR and proposed IRR are shown in

Table 3. Fig. 5 and Fig. 6 show the Gantt chart

representation of RR and IRR respectively.

Table 3. Comparison of RR and IRR

Algorithm Average Waiting

Time (ms)

Average Turnaround

Time (ms)

RR 47 67.4

IRR 40.4 59.4

Figure 5. Gantt chart representation of RR

Figure 6. Gantt chart representation of IRR

CASE 1 – Non-Zero Arrival Time:

In this case arrival time has been considered non-zero and

CPU burst time has been taken in increasing, decreasing and

random orders. Time quantum is 10 milliseconds.

CPU Burst Time in Increasing Order: We consider the

ready queue with five processes P1, P2, P3, P4 and P5

arriving at time 0, 4, 10, 15 and 17 with burst time 7, 18, 27,

30 and 36 respectively. The comparison result of RR and

proposed IRR are shown in Table 4. Fig. 7 and Fig. 8 show

the Gantt chart representation of RR and IRR respectively.

Table 4. Comparison of RR and IRR

Algorithm Average Waiting

Time (ms)

Average Turnaround

Time (ms)

RR 42 65.6

IRR 32 55.6

Figure 7. Gantt chart representation of RR

Figure 8. Gantt chart representation of IRR

Manish Kumar Mishra et al, Journal of Global Research in Computer Science,

© JGRCS 2010, All Rights Reserved 68

CPU Burst Time in Decreasing Order: We consider the

ready queue with five processes P1, P2, P3, P4 and P5

arriving at time 0, 4, 10, 15 and 17 with burst time 36, 30,

27, 18 and 7 respectively. The comparison result of RR and

proposed IRR are shown in Table 5. Fig. 9 and Fig. 10 show

the Gantt chart representation of RR and IRR respectively.

Table 5. Comparison of RR and IRR

Algorithm Average Waiting

Time (ms)

Average Turnaround

Time (ms)

RR 60.6 84.2

IRR 51.4 75

Figure 9. Gantt chart representation of RR

Figure 10. Gantt chart representation of IRR

CPU Burst Time in Random Order: We consider the ready

queue with five processes P1, P2, P3, P4 and P5 arriving at time

0, 4, 10, 15 and 17 with burst time 27, 7, 30, 36 and 18

respectively. The comparison result of RR and proposed IRR are

shown in Table 6. Fig. 11 and Fig. 12 show the Gantt chart

representation of RR and IRR respectively.

Table 6. Comparison of RR and IRR

Algorithm Average Waiting

Time (ms)

Average Turnaround

Time (ms)

RR 52 73.6

IRR 40 63.6

Figure 11. Gantt chart representation of RR

Figure 12. Gantt chart representation of IRR

CONCLUSION

One of the most important components of the computer

resource is the CPU. CPU scheduling involves a careful

examination of pending processes to determine the most
efficient way to service the requests. Many CPU scheduling

algorithms have been presented having some advantages and

disadvantages. In this paper an improved round robin CPU

scheduling algorithm is proposed. Simulation results shows
that the proposed IRR CPU scheduling algorithm is always

giving better performance than RR. After improvement in RR

it has been found that the waiting time and turnaround time

have been reduced drastically. This algorithm can be

implemented to improve the performance in the systems in

which RR is a preferable choice.

P1 P2 P3 P4 P5 P5 P1 P1 P3 P4 P3 P4 P4

 0

10

17

27

37

47

55

65

72

82

92

102

112

Time (ms)

118

P1 P2 P3 P4 P5 P1 P3 P4 P5 P1 P3 P4 P4

 0

10

17

27

37

47

57

67

77

85

92

102

112

Time (ms)

118

P1 P2 P3 P4 P4 P5 P1 P2 P3 P3 P1 P1 P2

 0

10

20

30

40

48

55

65

75

85

92

102

108

Time (ms)

118

P1 P2 P3 P4 P5 P1 P2 P3 P4 P1 P2 P3 P1

 0

10

20

30

40

47

57

67

77

85

95

105

112

Time (ms)

118

Manish Kumar Mishra et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 64-69

© JGRCS 2010, All Rights Reserved 69

REFERENCES

[1] Rakesh Kumar Yadav, Abhishek K Mishra, Navin Prakash

and Himanshu Sharma, “An Improved Round Robin

Schedduling Algorithm for CPU Scheduling”, International

Journal on Computer Science and Engineering, Vol. 02, No.

04, 2010, pp. 1064-1066.

[2] A. Silberschatz, P. B. Galvin, and G. Gagne, “Operating

System Concepts”, 7th Edn., John Wiley and Sons Inc, 2005,

ISBN 0-471-69466-5.

[3] Rami J. Matarneh,“Self-Adjustment Time Quantum in Round

Robin Algorithm Depending on Burst Time of Now Running

Processes”, American J. of Applied Sciences 6(10):1831-

1837,2009.

[4] H.S. Behera, R. Mohanty, and Debashree Nayak, “A New

Proposed Dynamic Quantum with Re-Adjusted Round Robin

Scheduling Algorithm and Its Performance Analysis”,

International Journal of Computer Applications, Vol. 5, No.

5, August 2010, pp. 10-15.

[5] Sunita Mohan,“Mixed Scheduling (A New Scheduling

Policy)”, Proceedings of Insight’09, 25-26 November 2009.

[6] Helmy, T. and A. Dekdouk, “Burst Round Robin as a

Proportional-share Scheduling Algorithm”, IEEEGCC,

http://eprints.kfupm.edu.sa/1462/, 2007.

[7] Debashree Nayak, Sanjeev Kumar Malla, and Debashree

Debadarshini, “Improved Round Robin Scheduling using

Dynamic Time Quantum”, International Journal of Computer

Applications, Vol. 38, No. 5, January 2012, pp. 34-38.

[8] Mehdi Neshat, Mehdi Sargolzaei, Adel Najaran, and Ali

Adeli, “The New method of Adaptive CPU Scheduling using

Fonseca and Fleming’s Genetic Algorithm”, Journal of

Theoretical and Applied Information Technology, Vol. 37,

No. 1, March 2012, pp. 1-16.

[9] H.S. Behera, Rakesh Mohanty, Jajnaseni Panda, Dipanwita

Thakur and Subasini Sahoo, “Experimental Analysis of a

New Fare-Share Scheduling Algorithm with Waited Time

Slice for Real Time Systems”, Journal of Global Research in

Computer Science, Vol. 2, No. 2, February 2011, pp. 54-60.

[10] H.S. Behera, Simpi Patel, Bijaylaxmi Panda. “A new

dynamic Round-robin and SRTN algorithm using variable

original time slice and dynamic intelligent time slice for soft

real time system”. International Journal of Computer

Applications (0975-8887), Volume 16, No.1, 54-60, February

2011.

[11] H.S. Behera, Rakesh Mohanty, Sabyasachi Sahu, Sourav

Kumar Bhoi, “Design and performance evaluation of multi

cyclic round robin(MCRR) algorithm using dynamic time

quantum” Journal of global research in computer

science(ISSN-2229-371X), volume 2, No.2, February 2011.

[12] H.S. Behera, Jajnaseni Panda, Dipanwita Thakur and

Subasini Sahoo, “A New Proposed Two Processor Based

CPU Scheduling Algorithm with Varying Time quantum for

Real Time Systems”, Journal of Global Research in

Computer Science, Vol. 2, No. 4, April 2011, pp. 81-87.

[13] Abbas Noon, Ali Kalakech, and Seifedine Kadry, “A New

Round Robin based Scheduling Algorithm for Operating

Systems: Dynamic Quantum Using the Mean Average”,

International Journal of Computer Science Issues, Vol. 8,

Issue 3, No. 1, May 2011, pp. 224-229.

[14] M.K. Srivastav, Sanjay Pandey, Indresh Gahoi and Neelesh

Kumar Namdev, “Fair Priority Round Robin with Dynamic

Time Quantum”, International Journal of Modern

Engineering Research, Vol. 02, Issue. 03, May-June 2012,

pp. 876-881.

Short Bio Data for the Author

Manish Kumar Mishra is with the Department of

Information Technology, Haramaya University, Ethiopia. He

has published several research papers in national and

international journals. His area of interest includes Operating

system, Software Engineering, Database and OOP.

Abdul Kadir Khan is with the Department of

Computer Science, Haramaya University, Ethiopia. He has

published several research papers in national and international

journals. His areas of interest are Operating system, Software

Engineering and Database.

http://eprints.kfupm.edu.sa/1462/

