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ABSTRACT— A Mathematical model of  biosensors  for 

phytohormone quantification has been developed.  The  

model  is based on the system of  five coupled non-linear 

ordinary differential equations that  describes the 

dynamics of DII-VENUS transcriptional reporter 

degradation in response to external application of  Auxin . 

The nonlinear relationship that exists between the target 

molecule and the reporter necessitates the development of 

mathematical models which are used to relate the sensor 

fluorescence with hormone abundance quantitatively.  In 

this article the analytical expressions for various levels of 

degradation of DII-VENUS for various doses of Auxin 

have been derived by using homotopy perturbation 

method.  The analytical results are compared with 

simulation results using Mat lab program.  It is found that 

the numerical results agree with the analytical results and 

with the appropriate theories. 

 

KEYWORDS— Auxin , Transcriptional reporters, DII-

VENUS, Phytohormone Quantification, Homotopy 

Pertubation method. 

 

I. INTRODUCTION 

 

 In recent years there are impressive advances in 

technologies that are available to detect signalling 

molecules in living cells. Plant hormones are signalling 

molecules which coordinate all the aspects of plant 

growth and development.  The biologists have been 

attracted towards the study of molecular mechanism for 

signal transduction of plant hormones during the last two 

decades. Remarkable progress  has been made in 

identifying transcriptional  receptors and key signaling 

components of plant hormones[1] .  Auxin is a unique  

plant hormone which moves actively around the plant by 

a series of transmembrane pumps or by the pump 

components [2].   The dynamic distribution of the auxin 

hormone within the plant tissues controls an  variety of 

developmental processes.[3]. The growth of the root is 

regulated by targeting Aux/IAA repressor proteins for 

degradation  by auxin. In this part of the work the 

conjunction of the mathematical model with Aux/IAA 

based reporter DII-VENUS,  is used to quantify Auxin 

abundance in plant hormones. Auxin acts by promoting 

the interaction between its receptors TIR1/AFB1-3 and 

Aux/IAA repressor proteins [4–6], resulting in their 

ubiquitination and degradation [7–9]. Having captured the 

quantitative and temporal relationship between DII-

VENUS and Auxin levels in the network model, 

researchers will now be able to use live imaging to follow 

the dynamics of DII-VENUS distribution in plant tissues 

and extrapolate them to changes in Auxin  levels. Bandet 

al. [10] demonstrated that this was possible by studying 

dynamic changes of DII-VENUS  reporter. 

 

II. MATHEMATICAL FORMULATION 

OF  THE PROBLEM 

 

Auxin promotes the degradation of DII-VENUS by 

mediating its ubiquitination. In each cell this degradation 

occurs via the network of interactions as shown below.  

[Auxin]  +  [TIRI]   ↔   [Auxin.TIRI] 

Here the process is modeled by assuming that the auxin-

TIRI/AFB complex binds to DII-VENUS to form an  

auxin-TIRI/AFB-VENUS complex, which then 

dissociates into an ubiquiting-tagged  DII-VENUS and 

auxin-TIRI/AFB complex. 

[Auxin.TIRI]  +  [VENUS]   ↔   [Auxin.TIRI.VENUS] 

The dynamics of DII-VENUS degradation in response to 

external application of Auxin  can be described by a 

system of  five coupled non linear ordinary differential 

equation  as shown below. 
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The simplest form of the above set of equations for easy 

solving is as  below follows.
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The analytical expressions which are obtained from the 

above set of      equations (2) by using homotopy 

perturbation method are given 

    below 
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III. RESULTS AND DISCUSSION 

 

Mathematical models are essential for reporters to become 

truly quantitative. The relationship between the 

concentration of a signaling molecule and a reporter is 

generally nonlinear. In figure 1 the flurosecence response 

of DII-VENUS reporter in different time intervals are 

plotted.  From figure 1 it can be inferred that there is a 

gradual reduction in the level of  DII-VENUS reporter 

fluroscence and it  reaches its steady state after 120 

minutes.  

Fig.2(a) reveals that the kinectic response of  DII-VENUS 

reporter increases gradually with the increase in the dose 

of  auxin added and reaches its steady state. Fig.2(b) gives 

the relationship between the auxin dose and the 

corresponding auxin influx rates. It is noted that as 

expected, the influx rate increases with larger doses and 

appears to increase linearly with the doses. The 

relationship saturates at higher doses. 

 

IV. CONCLUSION 

 

 Here it is reported that how the auxin reporter 

DII-VENUS can be used to quantify auxin abundance 

during a rapid developmental response .The mathematical 

modelling discussed here is used to understand the 

dynamics of the auxin response due to the degradation of 
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DII-VENUS reporter and also to compare the similarity of 

responses between different plant tissues and it is also 

driving the development of new biosensors and paving the 

way for a quantitative analysis of  biological processes.  

Such biosensors will be helpful to understand the 

operation and interaction of the plants with their 

environment. In future this quantitative approach can be 

adapted for use with equivalent reporters which operate in 

other plant hormone response pathways to develop further 

mechanistic insights. 

The Basic concept of  Homotopy perturbation method 

which is applied for finding the analytical solutions of the  

differential equations involved  is given in Appendix A 

and the Mat lab program used for finding the numerical 

solutions of the equations  is given in Appendix B. 

 

V. FIGURES AND TABLES 

 

Fig.1 

 

 
 

 

Fig.2 

 
 

 

Fig.3  

 

 
Fig.4 

 
 

Fig.1-4. . Plot of  dynamic response of  transcriptional 

reporters such as a) Auxin b)TIRI c) [Auxin.TIRI] d) 

[Auxin.TIRI.VENUS]  e) VENUS  from bottom to top 

respectively versus  time intervals in minutes using the 

equation(2). Solid line represents the numerical results 

where as dotted line exhibits the analytical results. 

 

Fig.5 

 

 
Fig..5  Plot of time versus fold changes in DII-VENUS 

signal for  
nM0001,nM001,nM10,nM5,nM1,0 

   from bottom to top respectively using  equation  (2) 

Fig..6 
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Fig.6.  Plot of time versus the fold changes in auxin influx 

for various levels of external application of the auxin 

doses in the tissues of  the plant cell such  as 

52.270,82.132,50.30,96.19,44.7,83.5 6543,21 

using equation )t(X1  in (2). 

The parameters involved  in this reaction are  given by 

0032.0,79.0,49.0,18.0I

,49.4I,15.1I,33.0k,00082.0k

m

dada




 

 

Nomenclature: 

S.No Parameter Description 

1 ak  Rate of dissociation between 

auxin and TIRI/AFB 

2 dk  Rate of dissociation of the auxin-

TIRI/AFB complexes 

3 al  Rate of association of DII-

VENUS to auxin-TIRI/AFB 

4 dl  Rate of dissociation of the auxin-

TIRI/AFB-VENUS complexes 

into DII-VENUS and auxin-

TIRI/AFB 

5 ml  Rate of dissociation of the auxin-

TIRI/AFB-VENUS complexes 

into ubiquitinated DII-VENUS 

and auxin-TIRI/AFB 

6   Rate of DII-VENUS production 

7   Rate of auxin influx 

8   Rate of auxin degradation and 

efflux 

9   Rate of decay of the DII-VENUS 

signal due to photobleaching 

10 [TIRI] Total concentration of TIRI/AFB 

receptors 
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APPENDIX A 

 

Basic concept of Homotopy perturbation method [9-22] 

To explain this method, let us consider the following 

function: 

   r      ,0)r(f)u(Do 
  

(A. 1) 

with the boundary conditions of 

   r            ,0)
n

u
 ,u(Bo 




  

(A. 2) 

where oD  is a general differential operator, oB  is a 

boundary operator, )r(f  is a known analytical function 

and    is the boundary of the domain  . In general, the 

operator oD  can be divided into a linear part L  and a 

non-linear part N . Eq. (A. 1) can therefore be written as 

 0)r(f)u(N)u(L 
    

(A. 3) 

By the homotopy technique we construct a homotopy 

 ]1,0[:)p,r(v  that satisfies 

  .0)]()([)]()()[1(),( 0  rfvDpuLvLppvH o  

     
(A. 4) 

 

  .0)]()([)()()(),( 00  rfvNpupLuLvLpvH

     (A. 5) 
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wherep [0, 1] is an embedding parameter, and 0u   is an 

initial approximation of Eq. (A. 1) that satisfies the 

boundary conditions. From Eq. (A. 4) and Eq. (A. 5), we 

have 

  0)u(L)v(L)0,v(H 0    (A. 6) 

0)r(f)v(D)1,v(H o 
   

(A. 7) 

When p=0, Eq. (A. 4) and Eq. (A. 5) become linear 

equations. When  

p =1, they become non-linear equations. The process of 

changing p from zero to unity is that of 0)u(L)v(L 0 

to 0)r(f)v(Do  . We first use the embedding 

parameter p  as a “small parameter” and assume that the 

solutions of Eq. (A. 4) and Eq. (A. 5) can be written as a 

power series in p : 

 ...2

2

10  vppvvv    (A. 8) 

Setting 1p    results in the approximate solution of Eq. 

(A. 1): 

...vvvvlimu 210
1p




   (A. 9) 

This is the basic idea of the HPM. 

 

Appendix B 

 

Matlab program for numerical solution of equation(1) 

function 

options= odeset('RelTol',1e-6,'Stats','on');  

%initial conditions  

x0 = [1; 1; 1; 1; 1];   

tspan = [0,120];   

tic 

[t,x] = ode45(@TestFunction,tspan,x0,options);  

toc 

figure 

hold on  

plot(t, x(:,1))  

plot(t, x(:,2)) 

plot(t, x(:,3)) 

plot(t, x(:,4)) 

plot(t, x(:,5)) 

legend('x','y','z')  

ylabel('x')  

xlabel('t')   

return 

function [dx_dt]= TestFunction(t,x)  

ka=.00082;kd=0.33;la=1.15;Id=4.49;Im=0.18;;d=.49;s=0.

79;u=0.0032; 

dx_dt(1)=kd*x(3)-ka*x(1)*x(2)+a-u*x(1); 

dx_dt(2)=-ka*x(1)*x(2)+kd*x(3);  

dx_dt(3)=ka*x(1)*x(2)-kd*x(3)+(Id+I1)*x(4)-

Ia*x(3)*x(5); 

dx_dt(4)=Ia*x(3)*x(5)-(Id+I1)*x(4); 

dx_dt(5)=d-Ia*x(5)*x(3)+Id*x(4)-s*x(5); 

dx_dt = dx_dt';    

return 
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