
Volume 2, No. 5, April 2011

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2011, All Rights Reserved 17

 ANTI-RANDOM TEST GENERATION IN SOFTWARE TESTING
 Kulvinder Singh1, Seema Rani*2

 and Rekha Rani3,

 CSE Dept. Kurukshetra University, Kurukshetra,India

kshanda@rediffmail.com1, seemagure7@gmail.com2, rekha_dove@rediffmail.com3

Abstract: The main purpose of software testing is found a error and then correct it. Random testing selects test cases randomly but it does not
explore the previous information. Anti-random testing in which each test applied its total distance from all previous tests is maximum. Anti-
Random testing is a variation of random testing, which is the process of generating random input and sending that input to a system for test. In
which use hamming Distance and Cartesian Distance for measure of difference.

Keyword: Software Testing, Anti-Random testing, Random Testing

INTRODUCTION

Testing is found out how well something is works. In the

human beings, testing says what level of knowledge has

been acquired. In computer software development, testing is

used as checkpoints in the overall process to determine that

objectives are being met. For example in software

development, product objectives are sometimes tested by

product user. When the design is completed, follows the

coding and the finished the code then tested the unit level

by each programmer; in the component level the group of
programmers involved; and at the system level when all

components are combined together. At early stages, a

service may also be tested for usability. From the point of

view testing a script, a error is any circumstance where the

script does not know what it is supposed to do. An error may

or may not cause the script to actually crash.

Defect can be caused by flaws in the application software or

by flaws in the application specification. For example,

unexpected or incorrect results can be from the errors made

during the construction peroid, or from an algorithm

incorrectly defined in specification. Testing is assumed to
mean executed software and finded errors. This type of

testing is known as dynamic testing, it is not the most

effective way of testing. Static testing, inspection and

validation of development requirements, is the most

effective and cost efficient way of testing. A structured

approach of testing should be used both dynamic and static

testing techniques.

WHAT IS SOFTWARE TESTING?

The primary purpose of software testing is found a error or

defects and then correct it. Software testing is often viewed

as either an exercise to show that a program is correct or

incorrect. A testing technique can show a program is not

correct, but infinite number of testing are required showing

a program is correct. Software testing is an investigation

conducted to provide stakeholder with information about the

quality or services under test. Software testing also provides

an objective, independent view of the software to allow the

business to appreciate and understand the risks at
implementation of software. Test technique, the process of

executing a program or application with the intent of finding

software bugs (by Wikipedia)

In software testing technique we create test case for detect a

error in the program. After a test case design, if the program

is execute successfully that means error is detected.

Software testing is any activity aimed at evaluating an

attribute or capability of a program or system and

determining that it meets its required results [1]. Software

Testing is the process of executing a program with the intent

of finding errors [2] Or, it involves any activity aimed at
evaluating an attribute of a program and determining that it

meets its required results [1]. Software is not other physical

processes where inputs are received and outputs are

produced. Where software differs is in the manner in which

it fails. Most physical systems fail in a fixed set of ways. By

contrast, software can fail in many different ways. Detecting

all of the different failure modes for software is generally

infeasible [3].

Software bugs will almost always exist in any software with

different size: not because programmers are careless or

irresponsible, but because the complexity of software is

generally intractable -- and humans have only limited ability
to manage complexity. It is also true that for any complex

systems, design defects can never be completely ruled out.

Discover the designed defects in software, is totally

difficult, for the same reason of complexity.

If a failure during testing and the code is changed, the

software may now work for a test case that it didn't work for

Seema Rani et al, Journal of Global Research in Computer Science, Volume 2 No 5 2011

© JGRCS 2011, All Rights Reserved 18

previous program. But its behavior on pre-error test cases

that it passed before can no longer be guaranteed. To

account for this possibility, testing should be restarted. The

expense of doing this is often prohibitive [3].

An interesting analogy parallels the difficulty in software

testing with the pesticide, known as the Pesticide

Paradox [4]: Every method you use to find bugs leaves a

residue of subtler bugs against which those methods are
ineffectual. But this alone will not guarantee to make the

software better, because the Complexity

Barrier [4] principle states: Software complexity grows to

the limits of our ability to manage that complexity. By

eliminating the previous bugs you allowed another

escalation of features and complexity, but his time you have

subtler bugs to face, just to retain the reliability you had

before. Society seems to be unwilling to limit complexity

because we all want that extra bell, whistle, and feature

interaction. Thus, our users always push us to the

complexity barrier and how close we can approach that
barrier is largely determined by the strength of the

techniques we can wield against ever more complex and

subtle bugs. [4] . Testing is must than debugging. The

purpose of testing can be quality assurance, verification and

validation [5].

TESTING METHOD?

Software testing methods are basically divided into two

methods that are white box testing and black box testing.
There are two approaches are used to describe the point of

view that a testing engineer used when designed test cases.

White box testing:-

It is a clear box testing method of testing software that tests

internal working of an application as opposed to its black

box testing. An internal working of the system or the

programming skills, are required and to design test cases.

The tester selects the input to exercised paths through the

code and determines the correct output. White box testing is

performed based on the knowledge of how the system is

implemented. White box testing requires knowing what
makes software secure or insecure, how to think like an

attacker, and how to use different testing tools and

techniques [6].

White box testing is very different from black box testing.

White box testing is a testing that takes into account the

internal mechanism of a system or component [7]. White

box testing is also called structural testing, clear box testing,

and glass box testing [10]. We use different type of testing

in software testing.

Basically six type of testing are used in white box testing

that is:-unit, integration, regression, acceptance, function

and beta testing, but in case of white box testing we use unit

testing, integration testing and regression testing.

 Unit testing:-

 It is a testing of hardware or software groups of

related units [7]. A unit is a software component that cannot

be subdivided into another component [7]. Unit testing is

done on a small piece, or a code of unit. This unit is usually

a class. When a unit is integrated into the main code, it is

more difficult to find a bug in that unit [12].

 Integration testing:-

It is a testing it may be hardware component or software

component or both are combined and tested to evaluate the

integration between them [7]. Integration testing looks at
how all components at an application interact [12].

 Regression testing:-

That is selectively retesting of a system to verify that

modifications have not caused unintended effects and that

the system or component still complies with its specification

requirements [7]. Regression testing verify that

modifications to the system have not damaged the whole of

the system unit test and integration test can be rerun in

regression testing to verifies that modification to the

application work properly [12].

Fig: 1 white box testing [12]

White box test design technique include:-

 Control flow testing:-

In computer science, control flow refers to the order in

which the individual statements, instructions, function or a

declaratives program are evaluated.

 Data flow testing:-

Data-flow testing looks at the life-cycle of a particular piece

of data in an application. By looking for patterns of data

usage, risky areas of code can be found and more test cases

can be applied [52].

 Branch testing:-

Branch testing A test strategy seeking to choose test data

values that lead to the testing of each branch in a program at

least once (branching occurring at each decision point). It is

equivalent to finding a set of paths through the control flow

graph whose union covers all the arcs of the graph. Branch

testing normally requires more tests than statement

testing but fewer than path testing [53].

 Path testing

Path testing A test strategy equivalent to finding all possible

paths through the control-flow diagram of a program.
Testing each path at least once is a typical test strategy, but

Seema Rani et al, Journal of Global Research in Computer Science, Volume 2 No 5 2011

© JGRCS 2011, All Rights Reserved 19

for much real software complete path test coverage would

require an impracticably large test run/time. Path testing

almost always requires more test runs than either branch

testing or statement testing [53].

Black box testing:-

Black box testing treats the software as knowledge of

internal implementation. Black box testing method of testing

software that test the functionality of an application as

opposed to its internal structure or working (by Wikipedia)

Fig.2 Black box testing (by Wikipedia)

Specific knowledge of the application‟s code or internal

structure and programming knowledge in general is not

required. Test cases are built around specification and

requirements

The black-box approach is a testing in which test data are

derived from the specified functional requirements [8]. It is

also termed data-drive [2], or requirements-based [1] testing.
Because only the functionality of the software module is of

concern, black-box testing also refers to functional testing --

a testing method emphasized on executing the functions and

examine of their input and output data [13]. The tester treats

the software under test as a black box -- only the inputs,

outputs and specification are visible, and the functionality is

determined by observing the outputs according to inputs. In

testing, various inputs are exercised and the outputs are

compared against specification to validate the correctness.

All test cases are derived from the specification. No

implementation details of the code are considered. The
research in black-box testing focuses on how to maximize

the effectiveness of testing with minimum cost or the

number of test cases. It is not possible to exhaust the input

space, but it is possible to exhaustively test a subset of the

input space. Partitioning is the common techniques. If we

have partitioned the input space and assume all the input

values in a partition is equivalent, then we only need to test

one represent value in each partition to sufficiently cover the

whole input space. Domain testing [7] partitions the input

domain into regions, and considers the input values in each

domain an equivalent class. Domains can be exhaustively

tested and covered by selecting a represent value in each
domain. Experience shows that test cases that explore

boundary conditions have a higher payoff than test cases

that do not. Boundary value analysis [2] requires one or

more boundary values selected as representative test cases.

Typical black-box test design techniques include:

 Decision table testing

Decision tables are a precise yet compact way to model

complicated logic. Decision tables, like flowcharts and if-

then-else and switches- case statements, associate conditions

with actions to perform, but in many cases do so in a more

elegant way [by Wikipedia].

 All pair testing

All-pairs testing or pair wise testing is a combinatorial

software testing method that, for each pair of input

parameters to a system, tests all possible discrete

combinations of those parameters. Using carefully chosen

test vectors, this can be done much faster than an exhaustive
search of all combinations of all parameters, by

"parallelizing" the tests of parameter pairs. The number of

tests is typically O(nm), where n and m are the number of

possibilities for each of the two parameters with the most

choices.

 State transition table

In automata theory and sequential logic, a state transition

table is a table showing what state a finite semi automaton

or finite state machine will move to, based on the current

state and other inputs. A state table is essentially a truth

table in which some of the inputs are the current state, and
the outputs include the next state, along with other outputs.

A state table is one of many ways to specify a state machine,

other ways being a state diagram.

 Equivalence partitioning

Equivalence partitioning is a software testing technique that

divides the input data of a software unit into partitions of

data from which test cases can be derived. In principle, test

cases are designed to cover each partition at least once. This

technique tries to define test cases that uncover classes of
errors, thereby reducing the total number of test cases that

must be developed.

In rare cases equivalence partitioning is also applied to

outputs of a software component, typically it is applied to

the inputs of a tested component. The equivalence partitions

are usually derived from the requirements specification for

input attributes that influence the processing of the test

object. An input has certain ranges which are valid and other

ranges which are invalid. Invalid data here does not mean

that the data is incorrect; it means that this data lies outside
of specific partition. This may be best explained by the

example of a function which takes a parameter "month". The

valid range for the month is 1 to 12, representing January to

December. This valid range is called a partition. In this

example there are two further partitions of invalid ranges.

The first invalid partition would be <= 0 and the second

invalid partition would be >= 13[by Wikipedia].

 Boundary value analysis

Seema Rani et al, Journal of Global Research in Computer Science, Volume 2 No 5 2011

© JGRCS 2011, All Rights Reserved 20

Boundary value analysis is a software testing technique in

which tests are designed to include representatives of

boundary values. Values on the edge of an equivalence

partition or at the smallest value on either side of an edge.

The values could be either input or output ranges of a

software component. Since these boundaries are common

locations for errors that result in software faults they are

frequently exercised in test cases.

For an example, if the input values were months of the year

expressed as integers, the input parameter 'month' might

have the following partitions:[by Wikipedia]

TESTING METHODOLOGY

There are various methodologies available for developing

and testing software. The methodology you choose depends

on factors such that the nature of project, the project

schedule, and resource availability. Most software

development projects involve periodic testing, some

methodologies focus on getting the input from testing early

in the cycle rather than waiting for input when a working

model of the system is ready. Those methodologies that

require early test involved have several advantages, but also

involve tradeoffs in terms of project management, schedule,

customer interaction, budget, and communication among
team members.

There are some testing methodologies are used:

 Random Testing

 Anti-Random Testing

 Random testing:-

Random testing is a form of functional testing that is useful

when the time needed to write and run directed tests is too

long. Release criteria include a statement about the amount

of random testing that is required.

One of the big issues in random testing is to know when a
test fails. As with all testing, an oracle is needed. You could

rely in assertions in the code as your role oracle. In other

situations, common with hardware development. You have

two different implementations of the same specification, one

is „the golden model‟, and other is the „implementation‟. If

they both agree to a defined accuracy then the test passes.

Random testing is useful if it does not find many defects per

time interval, since it can be performed without manual

intervention. An hour of computer time can be much less

expensive than an hour of human time When doing random

testing you must ensure that your test are sufficiently

random, and that they cover the specification repeating the
same test for two weeks doesn‟t tell you anything[14].

It is often claimed, correct, that random testing is less

efficient than directed testing. But you should consider the

time needed to write a random test generator and the time to

write a set of directed tests. Once you have a random test

generator, your computer can work 24 hours a day, at most

,6 productive hours in a day; then the efficiently of the

random tests is effectively increased by a factor of 4.

 Anti-Random testing:-

“The concept of anti-random testing in which each test

applied is chosen such that its total distance from all

previous tests is maximum[15]”.

Some information are available in black box testing, random

testing does not explored that information. This information

depends upon the previous tests applied. Now we use a new

approach that use this information and allowed like
generation to be done automatically. We call this approach

Anti-random testing. In Anti-random testing we can test any

approach without randomly. In which we can use any test

any time.

Some problems are occurring during Anti-random testing.

First of all problem of generating Anti-random sequence is

considered for Boolean inputs for make each new test as

different, we use Hamming Distance and Cartesian Distance

for measure of difference. In general, the input variable for a

program can be numbers, character etc. Here we use Anti-

random testing so we can convert this input code into

binary, then this code allow binary anti-random sequence to
be decoded into actual inputs, in such cases, Anti-random

testing to find defects sooner, and reducing the overall test

and debugging time.

Anti-random testing is a variation of random testing, which

is the process of generating random input and sending that

input to a system for test. In many situations, random test

input does not have an associated expected return value. In

such situations, the purpose of random testing is to try to

generate a system failure of some sort, such as a hang.

Research studies have shown that pure random testing is

relatively less effective at discovering bugs than other
testing paradigms, such as equivalence partition testing and

boundary value analysis testing. However, random testing is

appealing because it is typically quick and easy to

implementation. The idea of Anti-random testing appears to

have been introduced by the field of hardware testing.

Essentially, Anti-Random testing generates an input set of

random values, where the values are as different as possible

from each other. The assumption is that similar input to a

system will expose similar types of bugs, and therefore an

input set that contains values that are very different [56].

Terms used in anti-random sequence:-

 Anti-random test sequence:-

It is a Anti-random test sequence such that Ti that

is satisfied some criteria with respect to all test to Ti…..Ti-1.

 Distance:-

Measurement of different two vectors like Ti and Tj.

Seema Rani et al, Journal of Global Research in Computer Science, Volume 2 No 5 2011

© JGRCS 2011, All Rights Reserved 21

 Hamming distance:-

That is also the test sequence that is the number of bits in

which two binary number are differ.

 Cartesian distance:-

That is the difference between two vector.

 &

 is given

(1)Since the two test vectors are binary, so (1) can

be written as

 Total hamming distance:-

In any number is the sum of its hamming distance with

respect to all previous number.

 Total Cartesian distance:-

In any number is sum of its Cartesian distance with respect

to all previous number.

 Maximal Distance Anti-random Test Sequence (MDATS):-

It is a test sequence such that each test ti is chosen to
make the total distance between ti and each of to, tl ... ti-1

is maximum for all possible choices of ti. We used

Hamming distance and Cartesian distance to construct

MHDATSs and MCDATSs.

 If a sequence B is obtained by reordering the variables of

sequence A, then B is a variable- order-variant (VOV) of

A.

Theorem 1: If a sequence B is variable-order-variant of a

MHDATS A, then B is also a MHDATS. The theorem

follows from the fact that Hamming or Cartesian distance is

independent of how the variables are ordered.

 If a binary sequence B is obtained by changing the

polarity (i.e. inverting all the values) of one or more

variables of a sequence A, then B is termed a

polarityvarknt of A.

Theorem 2: If a sequence B is a polarity-variant of a

MHDATS A, then B is also IMHDATS. The theorem

follows from the fact that for a pair of vectors the

distance remains the same, if the same set of variables in

both are complemented

 Checkpoint Encoding

Generation of binary anti-random test sequence is also a

problem. For reduces this problem we use the checkpoint

encoding scheme is introduced.

Checkpoint Encoding is the process of representation of any

input domain of a software system into a binary valued

domain. Any input data value can now be translated with

minimal loss of information into a binary valued string. This

abstraction of any application domain into an uniform

format allows a variety of testing techniques to be applied

consistently and universally. Anti-random testing is one

such scheme that takes advantage of binary representation

that checkpoint encoding provides and has shown good

results. The checkpoint encoding process is usually applied

manually and in an arbitrary fashion. The result varies
depending on the choices made by individual test engineer

carrying out the process [57].

In common cases, the inputs can be numbers; alphanumeric

characters as well as data structures composed using them.

In such cases also we would like to maximize the

effectiveness of testing. It is possible for one to define

„distance‟ and use them for constructing anti-random

sequences in such cases also.

Example 8: Let us consider two real variables x and y which

can range from 0 to 1. The following then is a MCDATS.

0 0

1 1

0.5 0.5

So, defining „distance‟ can be difficult for data structures.

Also for a program, the input variables can be of different

types and ranges, which will make construction of anti-

random sequences extremely hard.

We here propose an encoding approach which will convert

the problem to constructing binary anti-random sequences.

The approach is based on domain and partition analysis and

the concepts of equivalence partitioning, revealing sub

domains and homogeneous sub domains. The technique

partially encodes an input into binary, such that sample
points desired can be obtained by automatic translation.

These sample points, termed checkpoints here, are

strategically selected such that they are likely to span most

types of variations in the program behavior with respect to

each input. To illustrate the approach let us consider this

simple example. For convenience, we use a square bracket

(”[,, or ”I”) to indicate inclusion of the endpoint and a

parenthesis (”(” or ”)”) to indicate exclusion. For testing, it

is important to test for illegal input values because the

program must respond correctly to those inputs, as we see in

the following example. The range of illegal values should be

regarded as one or more additional equivalent partitions.

If testing is less than exhaustive, then maximum distance

anti-random testing (MDAT) is likely to be more efficient

than either random or pseudorandom testing. Even when

exhaustive testing is feasible, MDAT is likely to detect the

presence of faults earlier.

http://www.hindawi.com/journals/vlsi/2008/165709.html#eq1

Seema Rani et al, Journal of Global Research in Computer Science, Volume 2 No 5 2011

© JGRCS 2011, All Rights Reserved 22

TESTING DATA GENERATION PROCEDURE

Automatic test generation is designed to ease the test effort.

Here we have used three different approaches for automatic

test generation.

1. Anti-random with checkpoint encoding

2. Random with checkpoint encoding.

3. Random without checkpoint encoding

In Anti-random testing used some basis concepts.

Procedure 1. Construction of a MHDATS (MCDATS)

Step 1. For each of N input variables, assign an arbitrarily

chosen value to obtain the first test vector. This does not
result in any loss of generality.

Step 2. To obtain each new vector, evaluate the THD (TCD)

for each of the remaining combinations with respect to the

combinations already chosen and choose one that gives

maximal distance. Add it to the set of selected vectors.

Step 3. Repeat Step 2 until all combinations have been

used, or until the desired number of vectors have been

generated.

This procedure uses exhaustive search. As we will see later,

the computational complexity can be greatly reduced. Note

that the procedure ensures that a vector will not be repeated.

To illustrate the process of generating MDATS, we consider
in detail the generation of a complete sequence for three

binary variables.

Procedure 2. Expansion of MCDATS

Step1. Start with a complete MHDATS

of N variables, .

Step2. For each vector , , add an

additional bit corresponding to an added variable , such

that has the maximum total HD (CD) with respect to all

the previous vectors.

Procedure 3. Expansion and Unfolding of a MHDATS

(MCDATS)

Step1. Start with a complete variable MHDATS

(MCDATS) with vectors.

Step 2. Expand by adding a variable using Procedure 2. We

now have the first () vectors needed.

Step3. Complement one of the columns and append the
resulting vectors to the first set of vectors obtained in Step 2.

Here, it would be convenient to complement the variable

added in Step 2.

The above procedures have been implemented in a program

called ATG. It generates MCDATSs which are also

MHDATSs. The application of anti-random testing for

software has been reported in. Three related approaches

termed fast anti-random, random-like and maximum

distance testing have recently been proposed that attempt to

incorporate some of the features of anti-random sequences.

The CEAR test generation Scheme

The checkpoint encoding Anti-random testing (CEAR)

scheme used here was proposed by Malaiya [55].This
scheme integrated anti-random testing with checkpoint

encoding and design to process input test vector on the

automatically and to exercise the software under test. So,

this making the scheme cost-effective. The CEAR scheme

has three main components:

 The MHDATS (MCDATS) binary sequence generator.

 The Random value generator

 The binary to actual input translator

As shown in the figure, the CEAR is the collection of

Software tools that produce actual input vector for the

software under test. The MHDATS (MCDATS) binary

sequence generator calculates the next binary vector in the

anti-random sequence. The appropriate actual input test

vector is generated and fed to the software under test.

CONCLUSION

Anti-random testing is a new test generation approach.

Here we have demonstrated that it can achieve high-fault

coverage much faster than the pseudorandom testing. It can
also successfully applied for software testing and also test

for VHDL descriptions.Its effectiveness is especially

remarkable for finding faults. The scheme is well suited for

IDDQ testing because it provides very good coverage with

only a few vectors when black-box testing is used. One

possible way to exploit the capabilities of anti-random

testing is to use it until a suitable high coverage is obtained,

and then to switch to deterministic testing.

In this testing we use the anti-random testing in software

testing we use the testing with anti-random testing. In anti-

random testing we already proposed hamming distance and

Cartesian distance and more any sequence terms. Now we
use the gray code to generate the anti-random testing.

REFERENCE

[1] Hetzel, William C., The Complete Guide to Software

Testing, 2nd ed. Publication info: Wellesley, Mass. :
QED Information Sciences, 1988

[2] Myers, Glenford J., The art of software

testing, Publication info: New York : Wiley, c1979.

[3] http://www.rstcorp.com/definitons/software-

testing.html.

[4] Boris Beizer, Software Testing Techniques. Second

edition. 1990

http://www.hindawi.com/journals/vlsi/2008/165709.html#step2

Seema Rani et al, Journal of Global Research in Computer Science, Volume 2 No 5 2011

© JGRCS 2011, All Rights Reserved 23

[5] jiantao pan ,jpan@emu.edu,Dependable Embedded

Systems

[6] cigital, 2005-09-26,updated 2009-07-27 by Ken van

Wyk

[7] Beizer, Boris, Black-box Testing: techniques for

functional testing of software and systems. Publication

info: New York : Wiley, c1

[8] A standard for testing application software, William E.

Perry, 1990

[9] William E. Howden. Functional program Testing and

Analysis. McGraw-Hill, 1987.
[10] IEEE Standard Glossary of Software Engineering

Terminology (IEEE Std 610.12-1990), IEEE Computer

Soc., Dec. 10, 1990.

[11] Computer Science Dept.Colorado State

University,Yashwant K.Malaiya.

[12] Williams.Land Heckman.S,By:Sarah Heckman

Updated:2008-08-25

[13] W. Howden, Software Engineering and Technology:

Functional Program Testing, McGraw-Hill, New York,

New York, 1987.

[14] Dave whipp,2005 mailto:dave@whipp.name.

[15] IEEE 2002Malaiya S.Jayasumana.Y.K Dept. of
Comput. Sci., Colorado State Univ., Fort Collins, CO

[16] “Random testing revisited” Information and Software

Technology, Volume 30, Issue 7, September 1988,Tsai

WK,Loo.PS.

[17] “Adaptive random testing” „the art of case diversity‟

Journal of Systems and Software, Volume 83, January

2010, Tsong Yueh Chen, Fei-Ching Kuo, Robert G.

Merkel, T.H. Tse

[18] “Mirror Adaptive Random testing” Information and

Software Technology, Volume 46, 1 December

2004, T.Y. Chen, F.-C. Kuo, R.G. Merkel, S.P. Ng
[19] “On the use of uniform random generation of automata

for teaching” Electronic Notes in Theoretical Computer

Science, Volume 253, 17 October 2009, Frédéric

Dadeau, Jocelyn Levrey, Pierre-Cyrille Héam

[20] “Adaptive random testing based on distribution

metrics” Journal of Systems and

Software”, Volume82,Issue9, September2009, Tsong

Yueh Chen, Fei-Ching Kuo, Huai Liu.

[21] “A uniform random test data generator for path testing”

Journal of system and software, volume 83,Issue 12,

December 2010,Petit M,Gotlieb.

[22] “Distributing test cases more evently in adaptive
random testing, Journal of Systems And Software,

Volume 81, Issue 12, December 2008, Tsong Yueh

Chen, Fei-Ching Kuo, Huai Liu

[23] “A more general sufficient condition for partition

testing to be better than random testing” ,Information

Processing Letters, Volume 57, Issue 3, 12 February

1996.

[24] “On the inverse power laws for accelerated random

fatigue testing” ,International Journal of

Fatigue, Volume 30, Issue 6, June 2008.

[25] “System for automated fatigue crack growth testing

under random loading” ,International Journal of

Fatigue, Volume 7, Issue 1, January 1985,R.Sunder.

[26] “A fuzzy representation of random variables: An

operational tool in exploratory analysis and hypothesis

testing” ,Computational Statistics & Data

Analysis, Volume 51, Issue 1,1 November 2006, Gil

González-Rodríguez, Ana Colubi, María Ángeles Gil

[27] “Testing For unit root processes in random coefficient

autoregressive models”,Journal of

Econometrics, Volume 142, Issue 1, January 2008.
[28] “Testing the correlated random coeffient

model”, journal of Econometrics, Volume 158,

Issue 2, October 2010, James J. Heckman, Daniel

Schmierer, Sergio Urzua

[29] “Testing for random walk”, Physics Letters A, Volume

362, Issues 2-3, 26 February 2007, Tomomichi

Nakamura, Michael Small

[30] .“Testing the random walk hypothesis through robust

estimation of correlation” Computational Statistics &

Data Analysis, Volume 52, Issue 5, 20 January 2008,

Andrei Semenov

[31] “Testing parallel random number generators” ,Parallel
Computing, Volume 29, Issue 1, January 2003, Ashok

Srinivasan, Michael Mascagni, David Ceperley

[32] “Testing for random effects and serial correlation in

spatial autoregressive models” , Journal of Statistical

Planning and Inference, Volume 140, Issue 4, April

2010, Gabriel V. Montes-Rojas

[33] “Examining random and designed tests to detect code

mistakes in scientific software” ,Journal of

Computational Science, Available online 22 December

2010

Diane Kelly, Robert Gray, Yizhen Shao
[34] “Bootstrap techniques and fuzzy Random variables:

synergy in Hypothesis Testing with fuzzy data”,Fuzzy

Sets and Systems, Volume 157, Issue 19, 1 October

2006, Gil González-Rodríguez, Manuel Montenegro,

Ana Colubi, María Ángeles Gil

[35] “Effectiveness and benefit-cost of peer-based

workplace substance abuse prevention coupled with

random testing”, Accident Analysis & Prevention,

Volume 39, Issue 3, May 2007, Ted R. Miller, Eduard

Zaloshnja, Rebecca S. Spicer

[36] “Relative density of the Random r-factor proximity

catch digraph for testing spatial patterns of segregation
and association”, Computational Statistics & Data

Analysis, Volume 50, Issue 8, 10 April 2006, Elvan

Ceyhan, Carey E. Priebe, John C. Wierman

[37] “The use of domination number of a random proximity

catch digraph for testing spatial patterns of segregation

and association”, Statistics & Probability Letters,

Volume 73, Issue 1, 1 June 2005, Elvan Ceyhan, Carey

E. Priebe

[38] “Testing random number generators for microcomputer

applications of Monte carlo simulation”, Environmental

Seema Rani et al, Journal of Global Research in Computer Science, Volume 2 No 5 2011

© JGRCS 2011, All Rights Reserved 24

Software, Volume 6, Issue 4, December 1991, A.A.

Jennings, S. Mohan

[39] “Testing for random effects in panel data under cross

sectional error correlation-A bootstrap approach to the

Breusch pagan test”, Computational Statistics & Data

Analysis”, Volume 50, Issue 12, August 2006, Helmut

Herwartz

[40] “Non-specification based approaches to logic testing

for software”, Information and Software Technology,

Volume 44, Issue 2, 15 February 2002, Noritaka

Kobayashi, Tatsuhiro Tsuchiya, Tohru Kikuno
[41] “Testing- based process for evaluating component

Replaceability”, Electronic Notes in Theoretical

computer science,volume 236, 2 april 2009, Andres

flores, Macario polo

[42] “Adaptive Random Testing: the ART of test case

diversity” , Journal of Systems and Software, Volume

83, Issue 1, January 2010, Tsong Yueh Chen, Fei-Ching

Kuo, Robert G. Merkel, T.H. Tse

[43] “Adaptive software Testing with fixed-memory

feedback”, Journal of Systems and Software, Volume

80, Issue 8, August 2007, Kai-Yuan Cai, Bo Gu, Hai

Hu, Yong-Chao Li
[44] “Robust performance testing for digital forensic

tools” , Digital Investigation,Volume 6, Issues 1-2,

September 2009, Lei Pan, Lynn M. Batten

[45] “Detecting buffer overflow via automatic test input

data generation” , Computers & Operations Research,

Volume 35, Issue 10, October 2008, C. Del Grosso, G.

Antoniol, E. Merlo, P. Galinier

[46] “ShenHui Wu Malaiya, Y.K. Jayasumana,

A.P.” ,Dept. of Comput. Sci., Colorado State Univ.,

Fort Collins, IEEE oct 1998

[47] “High-Assurance System Engineering

Symposium”,1998. Proceedings, Third IEEE

International IEEE Nov 1998.

[48] “PROCEEDINGS The Eighth International

Symposium On Software Reliability

Engineering”, IEEE Nov1997

[49] “A comparison of MC/DC, MUMCUT and several

other coverage criteria for logical decisions”,Journal of

Systems and Software, Volume 79, Issue 5, May 2006,

Yuen Tak Yu, Man Fai Lau

[50] Shen hui Wu, Sridhar jandhyala, Yashwant K. Malaiya
and Anura P.Jayasumana computer science department,

Colorado state university, January 2008

[51] Fast Anti- Random(FAR) Testgeneration to Improve

The Quality of Behavioral Model Verification Tom

Chen, Andre Baj, Amjad Hajjar, Anneliese K.Amschler

Andrews and Anderson,2002.

[52] Laurie Williams and Sarah Heckman, Sarah Heckman,

2008-08-25

[53] JOHN DAINTITH.”branch testing. “A Dictionary of

Computing. 2004. Encyclopedia.com.

[54] ANTIRANDOM TESTING: GETTING THE MOST

OUT OF BLACK-BOX TESTING Yashwant K.
Malaiya Computer Science Dept. Colorado State

University

[55] Y.K Malaiya, “Anti-random testing: Getting The Most

Out Of Black Box Testing,” Proc. International

symposium on software Reliablity Engineering, Oct,

1995.

[56] Partial Antirandom string Testing by James McCaffrey,

Oct. 2009.

[57] Issues in Automation of Checkpoint encoding for anti-

random testing (2002) by Sanjay R.Pillai

