
Volume 3, No. 1, January 2012

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 55

APPLICATION BASED SELECTION TECHNIQUES FOR WEB SERVICES

MECHANISM

Deshraj Ahirwar*
1
Sandeep Gupta, Upendra and Neelesh Kori

*1Department of C.S.E, Samrat Ashok Technological Institute, Vidisha (MP)

deshrajahirwar.sati@gmail.com
2Department of C.S.E, Samrat Ashok Technological Institute, Vidisha (MP)

sgsandy30@gmail.com
3Department of C.S.E, Samrat Ashok Technological Institute

upendra.chaurasiya@gmail.com
4Department of C.S.E, Samrat Ashok Technological Institute

neelesh.kori01@gmail.com

Abstract- It has become much more difficult to access relevant information from the Web With the explosive growth of information available on
the World Wide Web. One of the promising approaches is web usage mining, which mines web logs for user models and recommendations. In

the domain of Web Services, it is not uncommon to find redundant services that provide functionalities to the clients. Services with the same
functionality can be clustered into a group of redundant services. Respectively, if a service offers different functionalities, it belongs to more
than one group. Having various Web Services that are able to handle the client’s request suggests the necessity of a mechanism that selects the
most appropriate Web Service at a given moment of time. In this paper presents an approach, Repository Based Web Services Selection, for
dynamic service selection based on virtualization on the server side. It helps managing redundant services in a transparent manner as well as
allows adding services to the system at run-time. In addition, the model assures a level of security since the consumers do not have direct access
to the Web Services.

Keywords- Web Service, QoS, Service Selection.

INTRODUCTION

Web Services can encapsulate a specific task or can be

designed as a composition of other services, representing a

complex aggregation. The Web Services conceptual model
describes the process of discovery, request and response.

Discovery is the process of finding the service that provides

the functionality that is required. A request provides the

input to the service. The response yields the output from the

service. Service providers describe their Web Services and

advertise them in a universal registry called Universal

Description Discovery and Integration (UDDI). This enables

service requestors to search the registry and find services.

UDDI allows for the creation of registries that are accessible

over the web. IBM, Microsoft, and Oracle all have public

UDDI servers running for commercial purposes. There are
also many organizations developing third party servers for

users to establish their private UDDI servers. The UDDI

client offers two approaches to access the UDDI server:

either through a standalone application providing an easy-to-

use interface for developers; or through a software library

working with the WS consumer or provider. UDDI Browser

is an open-source UDDI client following the first approach.

A developer can use the application to browse, search, and

even change information in the UDDI server [1] and [3].

Web Services can be ranked by the Quality of Service (QoS)

they offer. QoS is a means to enable selection and filter out
unqualified providers. QoS can be seen as an aggregated

measure of generic criteria such as availability, reliability,

failure rate, trust and reputation, response time, price, and

network load and domain specific features .The reasoning

mechanism is responsible for the selection of a Web Service

at a particular moment of time. In order to distinguish one

service from another using the specified criteria, this unit

requires a set of instructions that help evaluate each

component and choose the most appropriate one

respectively. A set of instructions can be seen as a selection

technique.XML Web services enable the exchange of data

and the remote invocation of application logic using XML

messaging to move data through firewalls and between

heterogeneous systems. Although remote access of data and

application logic is not a new concept, but doing so in a
loosely coupled fashion is. Hence it poses new challenges.

In Web Services, the interface hides the implementation

details of the service, allowing it to be used independently of

the hardware and software platform on which it is

implemented and also of the programming language in

which it is written. This allows and encourages Web

Services based applications to be loosely coupled,

component oriented, cross technology implementations [4].

In this paper we proposed the web service selection

technique. The purpose of web service selection is to select

optimal web service for a particular task. When dynamic
discovery is used in Web Services, it is common that the

result of the discovery contains more than one provider.

Unlike the file sharing P2P system in which a file download

can be split into many small tasks running in multiple peers,

a service invocation occurs between a provider and a

consumer. The Web Service consumer must pick only one

from all candidate providers to perform the invocation. Even

for a composite Web Service consisting of many atomic

Web Services, the selection issue still needs to be addressed

when there are multiple providers available for an atomic

service. In order to make a distinction between the services

Deshraj Ahirwar et al, Journal of Global Research in Computer Science, 3 (1), January 2012, 55-59

© JGRCS 2010, All Rights Reserved 56

which provide the same functionality, selection criteria

should be used. They help evaluate the Web Services within

a group and choose the component that matches the needs

and the preferences of the consumers, while taking into

account the abilities of the providers.

BACKGROUND

Web Service:

The definition of a Web service is given as: ”any process

that can be integrated into external systems through valid
XML documents over Internet protocols”. This definition

outlines the general idea of Web services are built for unlike

services in general, Web services are based on specifications

for data transfer, method invocation and publishing. This is

often misunderstood and when a Web service is mentioned

it sometimes refers to a general service provided on the

Web, like the weather forecast on a Web page for example.

The weather forecast is a service and provides its

functionality for a variety of users but unless it comprises an

interface to communicate with other applications via SOAP,

it is not a Web service by definition. Web services can be
seen as software components with an interface to

communicate with other software components. They have

certain functionality that is available through a special kind

of Remote Procedure Call. In fact they even evolved from

traditional Remote Procedure Calls. The difference lies in

the interface and the method for transportation. Furthermore

Web services cannot be viewed or used with an ordinary

browser. They require a unified form of messaging

embedded in a XML document. This communication

architecture contains three subcomponents.

Consumer: This denotes the entity utilizing the Web

service. This is another application in most cases.

Transport: It defines the means for the communication the

Consumer uses while interacting with a service.

Provider: The service provider.

In order to keep the whole system truly platform-

independent, transport in both direction uses XML. This

includes the description of an operation to execute and the

data payload as well. Although transportation is not

restricted to a specific protocol or method, HTTP became
the most popular way to pass on XML documents between

Web services [2] and [6].

Simple Object Access Protocol (SOAP):

SOAP, the Simple Object Access Protocol was developed to

enable a communication between Web services. It was

designed as a lightweight protocol for exchange of
information in a decentralized, distributed environment.

SOAP is an extensible, text-based framework for enabling

communication between diverse parties that have no prior

knowledge of each other. This is the requirement a transport

protocol for Web services has to fulfill. SOAP specifies a

mechanism to perform remote procedure calls and therefore

removes the requirement that two systems must run on the

same platform or be written in the same programming

language. SOAP also defines data encoding rules, called

base level encodings. It is important to note that these

Section 5 encodings are not mandatory in any way, so
clients and servers are free to use different conventions for

encoding data as long as they agree on format. All this is

done in the context of a standardized message format.

The primary part of this message has a MIME type of

text/xml and contains the SOAP envelope which is an XML

document. The envelope consists of a an optional header

which may target the nodes that perform intermediate

processing, and a mandatory body which is intended for the

final recipient of the message. This way a firewall can be

adjusted to filter SOAP Messages with an inappropriate

header for example. The Header may also hold digital
signatures for a request contained in the body. The body

contains the serialized payload. For a request this is the

method argument where the surrounding XML tag must

have the same name as the called method. The response

body contains the return value if it exists. Data types are not

delineated in the SOAP envelope explicitly so the type of a

result parameter cannot be discovered just by looking at the

SOAP message [4] and [5].

Using Web Services:

To finally use a Web service, several steps have to be

performed. The order of the events, followed by a

description of how to execute each step.

Locating the Web service: This can either be done by

browsing a public UDDI registry or by means of an existing

WSDL document. It is possible to build a private UDDI

registry as well. Private registries are easier to maintain due
to their size but it can be hard to discover the UDDI

registry’s position. Sometimes, a company’s main Web page

is linked to WSDL documents, too.

Creating the SOAP Message: This is done by the

development tool in most cases. Tools like Weblogic

Workshop from BEA or Web service Development Kit from

Microsoft will create valid SOAP messages for the methods

described in the WSDL document or UDDI registry.

Transmission: Another advantage of message transport via
HTTP is the service providers firewall setting. If the firewall

permits Port 80 (HTTP POST/GET) connections, a SOAP

message is able to pass through as well. If the firewall is

unable to filter and process SOAP requests on the other

hand, it leaves the system vulnerable to attackers who use

the Web service’s functionality for a potential attack.

Parsing the SOAP message : This is done by the provider’s

Application Server. The parser decides if the request is valid

and decides which procedure to call.

Processing: The service provider calls all necessary
procedures, or even other Web services, to complete the

requested task.

Return the Result: The result is wrapped in a SOAP reply

and returned to the requestor where the client application

can parse the message and evaluate the included data [6] and

[7].

Related Works:

Researchers have proposed various approaches for dynamic

web service selection. Maximilien and Singh proposed a

multi-agent based architecture to select the best service

Deshraj Ahirwar et al, Journal of Global Research in Computer Science, 3 (1), January 2012, 55-59

© JGRCS 2010, All Rights Reserved 57

according to the consumers’ preferences. Maximilien and

Singh describe a system in which proxy agents gather

information on services, and also interact with other proxy

agents to maximize their information and the conceptual

model they use to interact with the services is detailed

elsewhere. The proxy agents lie between the service

consumer and the service providers. The agents contact a

service broker, which contains information about all known

services, as well as ratings about its observed QoS. From

there, the information is combined with its own historical

usage, and the combined knowledge is used to select a
service, though the authors do not detail how. The agencies

contain data about the interactions between the clients and

the services which is used during the Web Services selection

process. In his work, trust and reputation are taken into

account during the decision process. Their approach divide

the QoS attributes into objective and subjective. The former

include QoS features such as availability, reliability, and

response time [3] and [8] .

In recent proposed a features, in their proposed approach as

well but their major selection criteria is based on the QoS
based service selection. They have considered three quality

criteria namely execution time, execution duration and

reputation for the selection. In addition, execution price,

duration, transactions support, compensation and penalty

rate are the other criteria. The authors of suggest an open,

fair, and dynamic framework that evaluates the QoS of the

available Web Services by using clients’ feedback and

monitoring.

The reasoning mechanism is responsible for the selection of

a Web Service at a particular moment of time. In order to
distinguish one service from another using the specified

criteria, this unit requires a set of instructions that help

evaluate each component and choose the most appropriate

one respectively. A set of instructions can be seen as a

selection technique. The major components of a reasoning

mechanism are criteria, model, and selection technique. The

model collects information about the participants of the

client-server interaction as well as represents it as

aggregated measures. Different selection techniques can

implement various business logics in order to make a

decision.

The reasoning mechanism in the approach proposed by Liu,

Ngu, and Zeng computes the QoS of the Web Services,

ranks them, and selects the most appropriate one. To

perform the selection, the QoS registry in their system takes

in data collected from the clients, stores it in a matrix of web

service data in which each row represents a web service and

each column a QoS parameter, and then performs a number

of computations on the data, such as normalization. Clients

can then access the registry, and are given a service based

on the parameters that the client prefers. The bottleneck of

the approach is the dependency on the consumers to give
regular feedback about their past experience with the Web

Services. The Success of this model is based on the clients

or the end users and their will to provide the necessary

feedback on QoS [9] and [10].

PROPOSED TECHNIQUES

In the domain of Web Services, it is not uncommon to find

redundant services that provide functionalities to the clients.

According to the Web Services conceptual model, the client

receives a list of services from the Universal Description

Discovery and Integration (UDDI), selects one, and starts an

interaction with the service to process the request. In
previous, service selection is an important process and

various techniques have been proposed. In our approach for

dynamic service selection and invocation is introduced,

which has the following advantages in comparison with

previous approaches:

a. It provides location and replication transparency of the

Web Services;

b. It hides the system’s complexity from the clients;

c. It provides a transparent service selection from the

client’s point of view;

d. It assures a level of security, since the clients do not have
direct access to the Web Services.

The development of the proposed model in a real-world

application and the evaluation of such a system is a complex

procedure. It requires resources in terms of machines that

run a set of experiments and time that should be devoted to

each experiment setup, run, and analysis. In addition, it is

very likely that the results of the experiments depend on the

particular machine specifications and environment settings,

such as web server, communication style (for example,

Tomcat and Axis framework, if the system is implemented

in Java). Fluctuations, due to network, memory, CPU,
caching, and garbage collection, might appear as well. All

this could reflect on the correct analysis of the obtained data

and the validity of the conclusions. Furthermore, such an

implementation is based on particular standards, protocols,

and programming languages.

Proposed Repository Based-Web Services Selection:

We propose a technique for dynamic selection of Web

Services which will also handle the problem of redundant

Web Services. In this work, we introduce a model with a

Web Service repository, as shown in figure 1 will act as an

independent unit possessing a definite functionality. This

repository will be used to redirect the client’s request. This

will also provide a level of security since it will not be

allowed to invoke directly by the clients. This technique will

prevent unauthorized access to the real services. This

provision will also help to hide the systems complexity from

the clients.

The repository will perform three functions namely, storing,

collecting and reasoning. In storing operation a QoS

feedback report is generated by the client and is saved in the

repository. The QoS feedback report provides a historical

reference for the consumer to assess the provider. Each

provider only keeps the feedback information relevant to it.

The collecting operation retrieves all necessary data from

providers for the reasoning operation. The reasoning

operation manages to select the best service provider for the

consumer according to the collected data. Consider an
example where clients needs the services (S1,S2) as in

figure1, it sends a request .The collecting, storing and

reasoning mechanism interacts with the web services to find

the most appropriate of the services and the results are

Deshraj Ahirwar et al, Journal of Global Research in Computer Science, 3 (1), January 2012, 55-59

© JGRCS 2010, All Rights Reserved 58

stored in the repository for future reference. Web Services

here interacts with the reasoning mechanism to find out the

appropriate services. Once the service is selected, the

request is forwarded to it. Finally, when the result is

generated, it is passed to the repository which sends it back

to the client.

Figure1: Repository based Web Service Selection

Algorithm: Selection of Service:

This algorithm shows the necessary steps to choose a service

and get the maximum quality results.

a. For finding a service for a specified task, perform a

search on service descriptions.
b. Arrange all discovered services by their signature

parameter and discard all other services.

c. Get the desired Service Parameters.

d. Collect the services result and order by their utility.

e. If no results are found, let the client reconsider the

constraints, go to step 2.

Figure 2: Selection Process

This algorithm provides an approach for selecting a

specified service. Services, not matching the profile are
discarded on the fly .It also helps in taking an alternative

services.

Design of the Proposed Architecture:

Now we provide an overview of the design of the simulation

model that is used to evaluate the Repository Based Web

Services Selection approach. The architecture, proposed
here consists of three main components - Clients, Repository

Layer, and Web Services, forming the key compound

objects of the high-level view of the simulation design.

Object LG (load generator) generates clients’ requests

(entities); object represents the behavior of the model, and

each object WS corresponds to a Web Service. Object LS

(load sink) is used as the end point of the entity flow. It

accepts the incoming from the Repository Based Web

Services Selection entities and disposes of them. Component

Manager is not included, since the settings of the reasoning

mechanism are defined before the simulation runs. There is

a Virtual Web Service corresponding to each group of

redundant services with particular functionality. The

reasoning mechanism is presented by a queue and a server.

Evaluation:

Now we evaluate of the proposed Repository Based Web

Service Selection approach. Firstly, a feasibility check is

done to determine whether it is possible to build such

architecture. Secondly, the behavior of the Web Services is
observed and analyzed in different environments. Finally, to

observe the behavior of the prototype with different

selection techniques, the simulation method is used, since

the study of the optimal strategies is difficult in a real

environment where there are many uncontrollable

parameters. The evaluation process carried out by analyzing

the Based Web Service Selection prototype in order to test

whether or not the architecture is a feasible technique for

managing redundant Web Services on the server side in a

dynamic and transparent manner. A simplified prototype of

the proposed architecture is developed, in order to observe if

the model is an applicable approach for dynamic selection of
redundant Web Services. The dynamic service selection is

realized by reflection that allows us to obtain information at

run-time about methods, constructors, and instance fields of

classes, as well as to invoke them dynamically.

The reasoning mechanism is based on a random selection

technique that does not require any information about the

services. Since the decision is done in a random manner,

there is no need for selection criteria, neither the data about

the services must be collected and aggregated by the model.

The model of the reasoning mechanism contains only the
WSDL descriptions of the redundant Web Services.

RESULTS ANALYSIS

In our experiment show the results of the developed

framework are as follows:
a. The model has a feasible technique for dynamic

service selection on the server side. The layer is able to

manage the redundant services in a transparent manner.

All the necessary information, which should be

available to the client, is the service description of the

Web Services. The model hides the reasoning details

during the decision-making process. From the

consumer’s point of view, the prototype is the real

Web Service that handles the request.

b. The scalability of the system that implements the

described layer is expected to be the same as the
scalability of a system that does not consist of

redundant components. The decentralization of the

Web Services assures that there is no single point of

control and respectively of failure. There is a separate

component that represents and manages each group of

services and does not influence the proper work of the

whole system.

Deshraj Ahirwar et al, Journal of Global Research in Computer Science, 3 (1), January 2012, 55-59

© JGRCS 2010, All Rights Reserved 59

c. The architecture can be used as a layer that assures a

level of security. The Web Services are called by the

virtual layer and are never invoked directly by the

clients. This technique can prevent unauthorized users

from having access to the real services.

d. It is possible for the response time of the proposed

architecture to increase due to the reasoning

mechanism. This is an expected result since the

decision is taken at run-time. Furthermore, it implies a

trade-off between the appropriate service selection and

the execution time of the system.

The obtained data shows that the execution times of the

simulation runs are higher for the load balancing technique

compared to the fastest service selection but lower

compared to the random selection technique. In terms of

Web Services overloading, both the fastest and the load

balancing techniques present similar results.

CONCLUSION AND FUTURE WORKS

In this paper we proposed an approach for dynamic service

selection and, which has the following advantages in

comparison with previous approaches:

a. It hides the system’s complexity from the clients.

b. It provides a transparent service selection from the

client’s point of view.

c. It assures a level of security, since the clients do not have
direct access to the Web Services.

In future, other technology that can be applied in the

Repository based system is Semantic Web technology. By

describing the data in a machine-understandable manner and

creating semantics of QoS criteria, the decision-making

process would be based on more features as well as their

relationships would be represented in a better and more

flexible way.

REFERENCES

[1]. Li CHEN, Zi-lin SONG, Ying ZHANG, Zhuang MIAO,

“A Method for Context-aware Web Services Selection”,

International Journal of Advancements in Computing

Technology Volume 3, Number 7, August 2011, pp 291-

298.

[2]. Nabil Keskes , Ahmed Lehireche, Abdellatif Rahmoun,

www.ccsenet.org/cis Computer and Information Science

Vol. 4, No. 3; May 2011, pp 138-150.

[3]. Hela Limam and Jalel Akaichi, “MANAGING AND

QUERYING WEB SERVICES COMMUNITIES: A

SURVEY”, International Journal of Database Management

Systems (IJDMS), Vol.3, No.1, February 2011, pp 93-

108.

[4]. S.Susila, “Agent based discovery of web service to

enhance the quality of web service selection”, IJCSNS

International Journal of Computer Science and Network

Security, VOL.11 No.2, February 2011, pp 159-164.

[5]. R. Dinesh Kumar and Dr.G. Zayaraz, “A QOS AWARE

QUANTITATIVE WEB SERVICE SELECTION

MODEL”, International Journal on Computer Science and

Engineering (IJCSE), Vol. 3 No. 4 Apr 2011, pp 1534-

1538.

[6]. G. Vadivelou, E. IIavarasan, R. Manoharan, P. Praveen, “A

QoS Based Web Service Selection Through Delegation”,

International Journal of Scientific & Engineering Research

Volume 2, Issue 5, May-2011, pp 1-9.

[7]. Furkh Zeshan and Radziah Mohamad, “ Semantic Web

Service Composition Approaches: Overview and

Limitations”, International Journal on New Computer

Architectures and Their Applications (IJNCAA) 1(3): 640-

651 The Society of Digital Information and Wireless

Communications, 2011 (ISSN: 2220-9085), pp 640-651.

[8]. Jeberson R. Retna Raj, Sasipraba T., “Web Service

Selection Based on QoS Constraints”, IEEE, 2010.

[9]. Yu T., Lin K. J., “Service selection algorithms for Web

services with end-to-end Qos constraints”, Proceeding of

Information Systems and E-Business Management, 2005.

[10]. Tran VuongXuan, Tsuji Hidekazu, “QoS based ranking for

Web Services: Fuzzy Approach”, International Conference

on Next Generation Web Services Practices, 2008.

