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INTRODUCTION 

 
        Let's suppose that our Universe is characterized by (at least) another spatial dimension. Coherently with our perception of reality, 
with the usual hypothesis of homogeneity and isotropy, matter could be imagined as evenly spread on the surface of a four 
dimensional ball. Actually, having assumed the existence of a further spatial dimension, taking into account the symmetry, each 
material point has to be replaced by a material line segment bordered, on one side, by the center of the ball. In other terms, the 
Universe is no longer assimilated to a three dimensional spherical shell (a hypersphere), but rather to a closed 4 - ball. Moreover, the 
Universe is imagined as belonging to an oscillatory class characterized by a null curvature parameter and a negative cosmological 
constant[1].  
 
        As previously said, at the beginning, in absence of gravitational effects, the whole mass may be considered as evenly spread on 
the surface of the four dimensional ball (actually, according to what supposed, matter homogeneously fills the ball).  
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ABSTRACT 
 

          As clearly suggested by the title, the aim of this paper lies essentially in 
providing a simplified introduction to a theory of modified gravitation. And it is 
easy to understand how the theory in question, very simply, is entirely based 
upon the conservation of energy. Our Universe, imagined as characterized by at 
least another spatial dimension, is hypothesized as belonging to the so called 
oscillatory class, although the variation of distances is not to be intended as a 
real phenomenon. More precisely, the radius of curvature of the Universe 
apparently evolves following a simple harmonic motion. Coherently with our 
perception of reality, matter can be initially imagined as evenly spread on the 
surface of a four dimensional ball. Actually, once admitted the existence of a 
further spatial dimension, it would be better to state how, at the beginning, 
matter homogeneously fills the ball in its entirety. Subsequently, matter can be 
shared out in different ways, keeping the total amount constant, so as to 
produce gravitational singularities, herein considered as merely punctual, non 
rotating and non charged. Time is supposed as being absolute: in other terms, 
the gravitational source does not produce any real time dilation. The measured 
distance between the gravitational source and a generic point is not influenced 
by the value of the mass that generates the field. Therefore, if we consider two 
generic points, and one of them, taken as origin, acquires mass, the measured 
distance between the aforesaid points does not undergo any modification 
whatsoever. Under the above mentioned hypotheses, by ascribing a different 
meaning to the coordinate usually identified with the distance between the 
source and any point in the field, a fully Newtonian form for the gravitational 
potential may be recovered. 
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        Referring to Figure 1, the circumference centered at O' is simultaneously border of a disk, whose center obviously coincides with 
O' itself, and of a spherical cap, whose amplitude is double the angular distance between O, taken as origin, and a generic point P 
belonging to the above mentioned circumference. 
 

 
Figure 1. Angular Distance 

         
 
        Generally, denoting with x the flat coordinate (the forecast one), we have: 

         
        Denoting with l the measured distance, we have: 

         
        By introducing the dimensionless coordinate r 

         
        and the scale factor a 

         
        from (3) we can write: 

         
        Under the light of the previous considerations, we may easily understand the following identity: 

        The relation we have just considered represents, with obvious meaning of symbols and signs, the so called Robertson-Walker 
metric, written by setting the curvature parameter equal to one. As well known, this metric is suitable for a closed Universe, isotropic 
and homogeneous, characterized by a positive curvature whose value depends on time. It is worth underlining how, for the oscillating 
universe we have hypothesized, we have to consider a global curvature parameter equal to zero. In fact, although the reality we are 
able to perceive may be effectively represented by a three dimensional curved space, Universe in its entirety has to be imagined as 
characterized by at least four spatial dimensions. 

 
        Referring to Figure 2, let's consider a spherical cap, characterized by an amplitude equal to 2࣑max. Q represents a generic point 
of the border (a circumference whose radius is equal to the straight line segment bordered by O' and Q itself). 
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Figure 2. General Case 

 
 

        We can write the forecast radius as follows: 

         
        For the measured radius we can write: 

         
        What we imagine to be a disk is actually a spherical cap. In particular: 

         
        What we imagine to be a ball is actually a hyperspherical cap. In particular: 

         
        By using Taylor approximation, we can write: 

         
        As a consequence, by (15) and (16), the hyperspherical cap is well approximated by a sphere whose radius is equal to R࣑max 

        
         Now, let’s imagine we can concentrate in a single point the mass included in the hyperspherical cap characterized by an 
amplitude equal to 2࣑max. According to what initially supposed, the procedure is equivalent to concentrating the mass contained in 
the hyperspherical sector, characterized by the same amplitude, along the material line segment bordered by the center of the ball 
and by the point O. Due to the procedure we have carried out, the point will change its radial coordinate: in other terms, the material 
segment will undergo a contraction and the shape of the space from which we have taken away mass will result modified. The 
straight line segment bordered by C and O’ represents the new radial extension of the singularity. The straight line segment bordered 
by C and P’ represents the radial coordinate of a generic point, initially placed in P, after having carried out the above mentioned 
procedure.  
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        Generally, if a curve f(࣑) is expressed in polar coordinates, its length is provided by the following relation: 

 
        Now, we have to impose a fundamental condition:  the measured distance between any point and a generic gravitational source, 
imagined as punctual, does not undergo any modification whatsoever. If the radial coordinate, denoted with z, is exclusive function of 
the angular distance (as perceived by an ideal observer placed at the center of the ball), in order to satisfy the previous condition it 
has to be: 

         
        As a consequence, we have  

         
        Therefore, we have to solve the banal second order linear homogeneous differential equation 

         
        with the following boundary conditions: 

        
        The general solution is  

         
        By virtue of the foregoing, taking into account conditions (23) and (24), C1 and C2 can be easily deduced as follows: 

         
        Finally we obtain: 

         
        Figure 2 lets us clearly understand we could have reached the previous result by following a merely geometric line of reasoning. 
 
        If we denote with h the difference between the radius of curvature and the value of z, from (32) we can write   

         
 
 

DISCUSSION 
 

        The conservation of energy (and the equivalence principle[2]) can be expressed as follows[3]: 
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        m represents the mass at rest of a test particle (the mass is not sufficient to produce spatial deformations), and mz the 
corresponding modified mass, banally defined by introducing the linear density: 

         
        If the motion is produced by a gravitational field we may write: 

        Moreover, referring to a general metric, since it has to be 

 
        by taking into account (39) we can immediately write: 

 
        Given that the previous relations could be misleading, it is fundamental to underline how time does not undergo any real 
modification. It is worth specifying that the apparent time dilation expressed by the first component of the metric tensor is exclusively 
related to the contraction of the orbits. 

 
        Obviously, the potential can be expressed as follows: 

 
        Let’s initially discuss the following particular case. Very simply, we have to suppose that the whole mass of the Universe may be 
concentrated in a single point (obviously, the center of the ball). The scenario is represented in Figure 3.  

 

 
Figure 3. Particular Case 

 
        Under the above mentioned condition, taking into account relation (32), it must necessarily be: 

 
        Now, we have to suppose that our Universe may oscillate following a simple harmonic motion. If we denote with Rm the 
amplitude of the motion (the mean radius), with c the speed of light, and with ω the pulsation, we can write: 
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        Let’s denote with Mm the mass of the Universe (actually half the value of the mass-energy) when the radius of curvature is equal 
to Rm. Under specific conditions[4], the amplitude of the harmonic motion coincides with the Schwarzschild radius[5]:  

 
        Obviously, G represents the gravitational constant. From the previous position we immediately obtain: 

 
        As a consequence, underlining how the variation of distances is not to be considered as a real phenomenon, assuming the mean 
values as actual, by virtue of (39) and (48), we can state the following: 

 
        By carrying out the underlying position 

 
        from (49) we immediately obtain: 

 
        Obviously, it evidently turns out that 

 
        Moreover, remarking again how Rm is nothing but the Schwarzschild radius of the Universe, we have: 

 
        Bearing in mind that, due to the symmetry, all the energetic quantities in (36) are doubled, with the usual convention concerning 
the potential difference, we obtain the following pseudo Newtonian form: 

 
        By using relation, (32) it's easy to verify how, when the measured distance is equal to zero (or, equivalently, when the angular 
distance is null), the coordinate R*equates the Schwarzschild radius. In fact: 

 
        If we had wanted to deduce a fully Newtonian expression, we should have written (38) by considering a relativistic potential:  

 
        By virtue of the foregoing, we obtain: 

 
        By carrying out the following new position 

 
        we can immediately write once again relations (51) and (56). 
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        However, this time we have: 

 
        Let's consider now the general case: the singularity is provided with a mass whose value is inferior to the one of the Universe. 
More precisely, we can imagine concentrating in a single point a mass equal to the one contained in a hyperspherical sector 
characterized by an amplitude equal to 2࣑max. 
 
        The potential can be written as follows 

         
        As a consequence, taking into account equations (33) and (35), the maximum value of the potential proves to be:  

         
        From the two previous equations we immediately obtain: 

 
        The potential may be normalized as follows 

         
        so as to obtain: 

         
        Now, we can carry out the following position: 

         
        Obviously, from (35), denoting with Rs the Schwarzschild radiuses, we have: 

        
        Finally, with the usual convention already used in (56), we obtain:  

        
        Alternatively, we could have modified the gravitational constant as follows 

         
        so obtaining: 

 
        It may be interesting to notice how, due to the symmetry, we could represent the gravitational source as a non genuine 
singularity. In two dimensions, the material point that produces the gravitational field turns into a circumference (actually, a spherical 
surface), whose radius is exactly equal to the Schwarzschild one. The scenario, qualitatively depicted in Figure 4, may be obtained by 
rotating the modified profile, previously represented in Figure 2, around the straight line, orthogonal to the sheet plane, that crosses 
the point O, taken as origin.  
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Figure 4. Non Genuine Singularity 
 

        If we had carried out the above mentioned procedure by rotating the profile around the straight line, orthogonal to the sheet 
plane, that crosses O' (the genuine singularity), we would have obtained a gravitational spherical domain characterized by a radius 
provided by (8). 

 
 

CONCLUSIONS 
 

        Coherently with the title, this paper yearns to provide nothing but a premise, whose full comprehension should be easily 
achieved by taking advantage of what specified in the introduction, to a theory of modified gravitation. The Universe, hypothesized as 
provided with at least another spatial dimension, is supposed as characterized by a constant mass, initially evenly spread, as far as 
our perception of reality is concerned, on the surface of a 4 - ball. The mass can be shared out in different ways, keeping the total 
amount constant: in this paper, obviously, we have exclusively examined punctual singularities, non rotating and non charged. The 
fundamental hypothesis consists in imposing that the measured distance between the gravitational source, imagined as punctual, 
and any point in the field does not depend on the mass. Time is supposed as being absolute: as a consequence, a gravitational 
source is not able to produce time dilations. The first component of the metric tensor, barely mentioned in order not to sound too 
much off topic, has to be related to the contraction of the orbits, that takes place in spite of the fact that the measured radiuses do 
not undergo any variation whatsoever. Among the focal points, it is worth underlining that, according to the proposed simplified 
model, the Newtonian form can be preserved. We have to simply admit that the coordinate that characterizes the Newtonian 
potential, usually identified with the distance between the gravitational source and a generic point in the field, may have a quite 
different meaning. Although several metric solutions, based upon the considerations expressed in the article, could have been easily 
deduced, we have preferred to follow a line of reasoning that should allow, in a certain sense and measure, to concretely visualize a 
scenario that could turn out to be more understandable than one may imagine. 
 
 

REFERENCES 
 

1. Harrison E.R. Classification of uniform cosmological models. Monthly Notices of the Royal Astronomical Society. 1967; 137: 
69–79 

 
2. Einstein A. Relativity: The Special and General Theory (translated by Lawson RW, 1920). Henry Holt and Company, New York. 

1916  
  

3. Cataldo C. Towards a new Relativity: how to travel faster than light. Research & Reviews: Journal of Pure and Applied Physics. 
2016; 4:1  
 

4. Cataldo C. A simplified model of Oscillating Universe: alternative deduction of Friedmann–Lemaître equations with a negative 
cosmological constant. Research & Reviews: Journal of Pure and Applied Physics. 2016; 4:2 
 

5. Schwarzschild K. Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der 
Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik (On the Gravitational Field of 
a Mass Point according to Einstein’s Theory, translated by Antoci S and Loinger A, 1999). 1919: 189–196   


