
Volume 3, No. 5, May 2012

Journal of Global Research in Computer Science

TECHNICAL NOTE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 61

DEFENDING AGAINST WEB VULNERABILITIES AND CROSS-SITE

SCRIPTING

T.Venkat Narayana Rao
*1

, V. Tejaswini
*2

,K..Preethi
*3

*1 Professor, Department of Computer Science and Engineering

Hyderabad Institute of Technology and Management [HITAM], Hyderabad, A.P, India.

tvnrbobby@yahoo.com
2Student, B.Tech Third Year, Department of Information Technology

Hyderabad Institute of Technology and Management [HITAM], Hyderabad, A.P,

4tejaswani@gmail.com
3 Associate Professor, Department of Computer Science and Engineering

Hyderabad Institute of Technology and Management [HITAM], Hyderabad, A.P, India

Abstract: Researchers have devised multiple solutions to cross-site scripting, but vulnerabilities persists in many Web applications due to
developer‟s lack of expertise in the problem identification and their unfamiliarity with the current mechanisms. As proclaimed by the experts,

cross-site scripting is among the serious and widespread threats in Web applications these days more than buffer overflows. Recent study shows
XSS has ranked first in the MITRE Common Weakness Enumeration (CWE)/SANS Institute list of Top 25 Most Dangerous Software Errors and
second in the Open Web Application Security Project (OWASP). However, vulnerabilities continue to exist in many Web applications due to
developers‟ lack of understanding of the problem and their unfamiliarity with current guarding strengths and limitations. Existing techniques for
defending against XSS exploits suffer from various weaknesses: inherent limitations, incomplete implementations, complex frameworks, runtime
overhead, and intensive manual-work requirements. Security researchers can address these weaknesses from two different perspectives. They
need to look beyond current techniques by incorporating more effective input validation and sanitization features. In time, development tools will
incorporate security frameworks such as ESAPI that implement state-of-the-art technology. This paper focus on program verification

perspective, how researchers must integrate program analysis, pattern recognition, concolic testing, data mining, and AI algorithms to solve
different software engineering problems and to enhance the effectiveness of vulnerability detection. Focus on such issues would improve the
precision of current methods by acquiring attack code patterns from outside experts as soon as they become available.

Keywords: XSS, vulnerability, Injection, overhead, markup.

WHAT IS CROSS-SITE SCRIPTING (XSS)

Cross-site scripting (XSS) is a type of computer insecurity

vulnerability typically found in Web applications, such as

web browsers which breach the security that enables

attackers to infuse client-side script into Web pages viewed

by other users [1]. A cross-site scripting vulnerability may
be used by attackers to bypass access controls such as the

same origin policy. Several major websites including Face

book, Twitter, MySpace, eBay, Google, and McAfee have

been the targets of XSS exploits. XSS is the result of

limitations inherent in many Web applications‟ security

mechanisms i.e. the lack or insufficient refinement of user

inputs. XSS flaws exist in Web applications written in

various programming languages such as PHP, Java, and

.NET where application WebPages reference unrestricted

user inputs. Attackers inject malicious code via these inputs,

thereby causing unintended script executions through
clients‟ browsers.

Researchers have proposed multiple XSS solutions ranging

from simple static analysis to complex runtime protection

mechanisms. Cross-site scripting carried out on websites

accounted for roughly 80.5% of all security vulnerabilities

recorded by Symantec as of 2007. Their effect may range

from a petty trouble to a significant overhead of security

risk, depending on the value of the data handled by the

vulnerable site and the nature of any security mitigation

implemented by the site's owner. From a development
perspective, researchers need to craft simpler, better, and

more flexible security alternatives. Cross-site scripting flaws

are web-application vulnerabilities which allow attackers to

bypass client-side security mechanisms normally imposed

on web content by modern web browsers.

By finding ways of injecting malicious scripts into web

pages, an attacker can gain elevated access-privileges to

sensitive page content, session cookies, and a variety of

other information maintained by the browser on behalf for
user. Cross-site scripting attacks are therefore a unique case

of code injection [2]. The expression "cross-site scripting"

originally referred to the act of inducing the attacked, third-

party web application from an distinct attack site, in a

manner that executes a section of JavaScript programmed by

the attacker in the security framework of the targeted

domain. The definition gradually expanded to encompass

other modes of code injection, including persistent and non-

JavaScript vectors (including Java, ActiveX, VBScript,

Flash, or even pure HTML, and SQL Queries), causing

some uncertainty to newcomers to the field of information

security [3]. XSS vulnerabilities have been reported and
exploited since the 1990s. Well-known sites affected in the

history include the social-networking sites Twitter, Face

book, MySpace, and Orkut. In recent years, cross-site

scripting flaws surpassed buffer overflows to become the

most common publicly-reported security vulnerability, with

some researchers in 2007 viewing as many as 68% of

websites as likely open to XSS attacks.

T.Venkat Narayana Rao et al, Journal of Global Research in Computer Science, 3 (5), May 2012, 61-64

© JGRCS 2010, All Rights Reserved 62

TYPES OF XSS EXPLOITS

Persistent or Stored Attacks:

The persistent or stored XSS vulnerability is transpired

when the attacker is provided the data is saved back by the

server, and then returned to other users in the course of

normal browsing permanently displayed as "normal" pages,

without appropriate HTML escaping. Mostly this type of

vulnerability occurs in the Social websites where-in

members scan the profiles of other members [2]. For privacy

reasons, this site hides everybody's unique personal identity

and email. These are kept secret on the server. Particularly

in the case of social networking sites, the code would be
further designed to self-propagate across accounts, creating

a indirect kind of a client-side worm. Persistent XSS can be

more significant than other types because an attacker's

malicious script is turned into automatic nature, without the

need to individually target victims or also lure them to a

third-party website. Any data received by the web

application (via email, system logs, etc.) that can be

controlled by an attacker could befall into injection vector.

Non-persistent or Reflected Attacks:

Non-persistent XSS vulnerabilities in Google could permit

malicious sites to attack Google users who visit them whilst

logged in. A potential vector is a site search engine, given a

search for a string; the search string will typically be

redisplayed verbatim on the result page to indicate what was

searched for. If this response does not properly escape or

reject HTML control characters, a cross-site scripting flaw

would result in. A reflected attack is typically delivered via

email or a neutral web site. These holes show up when the
data provided by a web client, most frequently in HTTP

query parameters or in HTML form submissions, is used

immediately by server-side scripts to generate a page of

results for that user, without properly cleansing the request.

Because HTML documents have a flat, serial structure that

blends control statements, formatting, and the actual

content, any non-validated user-supplied data included in

the resulting page without proper HTML encoding[5]. This

may result in markup injection. In this class of scripting

languages are also used, e.g., Action Script and VBScript.
Mostly attackers would write the scripting in java language

only for common practice of the attack includes a design

step. In this context the attacker creates and tests an

offending URI(Uniform Resource Indicator), a social

engineering step, in which the offender convinces his

victims to load this URI on their browsers, and the eventual

execution of the offending code[4]. The web application

might filter out "<script>", but might not filter

%3cscript%3e which simply includes a different encoding

of tags. A nice tool for testing character encodings is

OWASP's CAL9000.

DOM-Based Attacks:

This name refers to the standard model for representing

HTML or XML contents which is called the Document

Object Model (DOM). JavaScript programs manipulate the

state of a web page and populate it with dynamically-

computed data primarily by acting upon the DOM. With the
arrival of web 2.0 applications a new class of XSS flaws has

emerged i.e. DOM-based vulnerabilities. DOM-based

vulnerabilities occur in the content processing stages

performed by the client, typically in client-side JavaScript

[1].

TYPES OF XSS DEFENCES

XSS defenses can be broadly classified into four types:

a. Defensive coding

b. XSS testing

c. Vulnerability detection

d. Runtime attack prevention.

It compares various current techniques, which each have

strengths and weaknesses.

Defensive Coding

XSS arises from the improper handling of inputs, using

defensive coding practices that validate and sanitize inputs

is the best way to eliminate XSS vulnerabilities. The user

must make sure that the inputs are validated and conform to

a required input format[3].
The four basic input sanitization options are :

a. Replacement and elimination methods search for

known bad characters (blacklist).

b. The former replaces them with non-malicious

characters, whereas the latter simply removes them.

c. Escaping methods search for characters that have

special meanings for client-side interpreters and

remove those meanings.

d. Restriction techniques limit inputs to known good

inputs (white list).

Checking blacklisted characters in the inputs is more
scalable, but blacklist comparisons often fall short as it is

difficult to foresee every attack signature alternative. White

list comparisons are considered more protected, but they can

result in the denial of many unlisted valid inputs. OWASP

has issued rules that define proper escaping schemes for

inputs referenced in different HTML output locations.

XSS Testing:

Input validation testing could expose XSS vulnerabilities in

Web applications. Specification based IVT methods

generate test cases with a plan of exercising various

combinations of valid or invalid input conditions stated in

specifications. In general, the effectiveness of both

specification and code based approaches depends largely on

the completeness of specifications or the sufficiency of

generated test suites for discovering XSS vulnerabilities in

source code. Hossain Shahriar and Mohammad Zulkernine

developed MUTEC, a fault based XSS testing tool that
creates mutated programs by changing responsive program

statements, or sinks, with mutation operators. Only test

cases containing adequate XSS attack vectors can bring

about original and mutated programs to behave.

Example 1.

document.write (escape (document.URL.substring

(pos,document.URL.length)));

One such test case is User :

→ <Script>alert(„XSSed!‟)</Script>

And then attempts to find a test case that result in a different
number of HTML tags between the original statement and

its mutated statement. MUTEC generates adequate test

suites for exposing XSS vulnerabilities but requires

T.Venkat Narayana Rao et al, Journal of Global Research in Computer Science, 3 (5), May 2012, 61-64

© JGRCS 2010, All Rights Reserved 63

intensive labor as the task of generating mutants is not

automated.

Vulnerability Detection:

This type of XSS defenses focus on identifying

vulnerabilities in server-side scripts. Static-analysis based
approaches can demonstrate the absence of vulnerabilities,

but they tend to produce many false positives. Recent

approaches combine static analysis with dynamic analysis

techniques to improve accuracy.

Static Analysis:

Benjamin Livs and Monica Lam used binary decision

diagrams to relate points to analysis to server-side scripts.

Their approach requires users to specify vulnerability

patterns in Program Query Language [6] .Yichen Xie and

Alex Aiken proposed a static analysis technique that acquire
block and function summary information from symbolic

execution Pixy, an open source vulnerability scanner and

also includes alias analysis to improve precision. These

techniques identify tainted inputs accessed from exterior

data sources, track the flow of tainted data, and check if any

reached sinks such as SQL statements and HTML output

statements. For example, for the program travelerTip it

reports the following statements as vulnerable:

Example 2.

out.println(“Your Post has been added

under Place „” + HTMLencode(place)+“‟”);
out.println(“Your Message: „”+

new_tip+ “‟ is too long!”);

out.println(“„”+tip+“‟”);

XSS vulnerabilities in source code and are relatively easy

for security personnel to implement and adopt. However,

they cannot check the correctness of input sanitization

functions and, instead, generally assume that unhandled or

unknown functions return unsafe data. These approaches

also miss DOM-based XSS vulnerabilities as they do not

target client-side scripts.

Static String Analysis:

The enhancement provides more accuracy as it can examine

string operations effects on inputs. However, when

conducting static string analysis, it is complicated to model

complex operations such as string-numeric interaction; thus,

this approach can result in false positives if analysts make
conventional approximations when handling such

operations. Gary Wassermann and Zhendong Su enhanced

the original taint-based approaches with string analysis.

Their technique uses context-free grammars (CFGs) to

signify the values a string variable can hold at a certain

program point, which facilitates the checking of blacklisted

string values in sensitive program statements. Static string

analysis also suffers from the limitations of blacklist

comparisons.

Runtime attack prevention:

In general, these methods set up a proxy between the client

and server to capture incoming or outgoing HTTP traffic.

The proxy then checks the HTTP data for illegal scripts or

verifies the resulting URL connections against safety

policies. XSS defenses focus on preventing real time attacks

using intrusion detection systems or runtime monitors,

which can be deployed on either the server side or client

side.

Client Side Prevention:

Its main disadvantage is that it requires client actions

whenever a connection violates the filter rules. Moreover,
this approach addresses all types of XSS attacks, it only

detects abuse that send user information to a third-party

server, not any other exploit such as those involving Web

content manipulation. Noxes acts as a private firewall that

allows or blocks connections to websites on the basis of

filter rules, which are basically user-specified URL white

lists and blacklists. When the browser sends an HTTP

request to an anonymous website, Noxes immediately alerts

the client, who chooses to allow or deny the connection, and

remembers the client‟s action for prospect use. Client-side

prevention provides a personal protection layer for clients so
that they need not depend on the security of Web

applications.

Server Side Prevention:

Users specify prerequisites of sensitive functions i.e. those

that contain HTML outputs and post conditions of

sanitization functions. During runtime, instrumented guards
ensure for conformance of these user-specified conditions.

The WebSSARI (Web Security via Static Analysis and

Runtime Inspection) tool, which executes type based static

analysis to identify potentially weak code sections and

implement them with runtime guards. Other approaches use

dynamic taint-tracking mechanisms to monitor the stream of

input data at runtime [6]. They ensure that these inputs are

syntactically restricted (only treated as literal values) and do

not hold unsafe content defined in user-specified security

policies. Some server side prevention mechanisms require

the collaboration of browsers. One example is BEEP
(Browser-Enforced Embedded Policies), a mechanism that

modifies the browser so that it cannot execute unlawful

scripts. Security policies dictate what data the server sends

to BEEP-enabled-browsers.

IMPLEMENTATION OF XSS DEFENCES

We all consent that cross-site scripting is a serious problem,

but what continues to amaze me is the lack of good

documentation on the subject. It is easy to find instructions

how to execute attacks against applications vulnerable to

XSS, but finding something adequate to cover defense is a

real challenge [2]. No wonder programmers keep making

the same errors over and over again. I am sure that one page

that describes the problems and the solutions is somewhere

out there, but I have been unable to find it. All I am getting

is a page after page after page of half-truths and partial

information, and even people saying that XSS is impossible
to defend against [3]. To help developers practice its

defensive coding rules, OWASP has created the Enterprise

SecurityAPI

(https://owasp.org/index.php/Category:OWASP_Enterprise_

Security_API) i.e. ESAPI, an open source library for many

different programming languages. Microsoft also provides

the Web Protection Library (http://wpl.codeplex.com) for

.NET developers. To produce web applications that are safe

against XSS and other injection attacks [7]. Every such

function must be aware of the character encoding used in the

T.Venkat Narayana Rao et al, Journal of Global Research in Computer Science, 3 (5), May 2012, 61-64

© JGRCS 2010, All Rights Reserved 64

application. Then, for every piece of code that sends data

from one component into another, make sure you use the

correct function to encode data to make it safe check that

every piece of data you receive is in the correct character

encoding and that the format matches that of the type you

are expecting (input validation). One must use white listing

(as blacklisting does not work) in preventing attackers from

executing JavaScript code in data pretending to be an

Internet address.

Example 3.
instead of http://www.btech.com, which you use to create a

link btech,

we get javascript:alert('xss')

CONCLUSION

Inherent limitations, unfinished implementations, complex

frameworks, runtime overhead and rigorous manual-work

requirements. These are the existing techniques for

defending against XSS exploits suffer from various

weaknesses. Security researchers can deal with these

weaknesses from two different perspectives. Researchers

need to craft simpler, better, and more flexible security

defenses [6] . They need to look beyond current techniques

by incorporating more effective input validation and

sanitization features. In time to come many development

tools would be incorporated for security frameworks such as
ESAPI that implement state-of-the-art technology.

Researchers must integrate program analysis, pattern

recognition, concolic testing, data mining, and AI

algorithms would be used rigorously in future to solve

different software engineering problems to improve the

effectiveness of vulnerability detection. They can also

improve the precision of current methods by gaining attack

code patterns from outside experts.

REFERENCES

[1]. M.S. Lam et al., “Securing Web Applications with Static

and Dynamic Information Flow Tracking,” Proc. 2008

ACM SIGPLAN Symp. Partial Evaluation and Semantics-

Based Program Manipulation (PEPM 08), ACM, 2008, pp.

3-12.

[2]. Y. Xie and A. Aiken, “Static Detection of Security Vulner-

abilities in Scripting Languages,” Proc. 15th Usenix

Security Symp. (Usenix-SS 06), vol. 15, Usenix, 2006, pp.

179-192.

[3]. D. Balzarotti et al., “Saner: Composing Static and Dynamic

Analysis to Validate Sanitization in Web Applications,”

Proc. 29th IEEE Symp. Security and Privacy (SP 08), IEEE

CS, 2008, pp. 387-401.

[4]. CERT:"CERT Advisory CA-2000-02 Malicious HTML

Tags Embedded in Client Web-Requests",

http://www.cert.org/advisories/CA-2000-02.html.

[5]. Aung Khant:"What XSS Can do - Benefits of XSS

From-Attacker's-view" http://yehg.net/lab/papers/Do.pdf

[6]. N. Li et al., “Perturbation-Based User-Input Validation

Testing of Web Applications,” J. Systems and Software,

Nov. 2010, pp. 2263-2274.

[7]. H. Shahriar and M. Zulkernine, “MUTEC: Mutation-Based

Testing of Cross Site Scripting,” Proc. 5th Int‟l Workshop

Software Eng. for Secure Systems (SESS 09), IEEE, 2009,

pp. 47-53.

Short Bio Data for the

#1.Professor T.Venkat Narayana Rao, received
B.E in Computer Technology and Engineering from Nagpur

University, Nagpur, India, M.B.A (Systems), holds a

M.Tech in Computer Science from Jawaharlal Nehru

Technological University, Hyderabad, A.P., India and a

Research Scholar in JNTU. He has 21 years of vast
experience in Computer Science and Engineering areas

pertaining to academics and industry related I.T issues. He is

presently Professor and Head, Department of Computer

Science and Engineering, Hyderabad Institute of

Technology and Management [HITAM], Gowdavally,

R.R.Dist., A.P, INDIA. He is nominated as an Editor and

Reviewer to 26 International journals relating to Computer

Science and Information Technology. He is currently

working on research areas which include Digital Image

Processing, Digital Watermarking, Data Mining, Network

Security and other emerging areas of Information
Technology. He can be reached at tvnrbobby@yahoo.com

Vedula Tejaswini is Pursing B.Tech Third year in

Information Technology from Hyderabad Institute of

Technology and Management [HITAM], Gowdavelly,

R.R.Dist., A.P, INDIA, Affiliated to Jawaharlal Nehru

Technological University (JNTU) Hyderabad.

K.Preethi, B.Tech, Graduate in Computer Science and

Engineering from Jawaharlal Nehru Technological

University, Hyderabad, India and M.Tech in Computer

Science and Engineering from Jawaharlal Nehru

Technological University, Hyderabad, India, Hyderabad,

A.P, India . She is presently working as an Associate

Professor in the department of Computer Science and

Engineering in Hyderabad Institute of Technology and

Management (HITAM), Gowdavelly,

K.Preethi, B.Tech, Graduate in Computer Science and

Engineering from Jawaharlal Nehru Technological

University, Hyderabad, India and M.Tech in Computer

Science and Engineering from Jawaharlal Nehru

Technological University, Hyderabad, India, Hyderabad,

A.P, India . She is presently working as an Associate

Professor in the department of Computer Science and
Engineering in Hyderabad Institute of Technology and

Management (HITAM), Gowdavelly,

