
Volume 2, No. 9, September 2011

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 20

DESIGN OF 32-BIT RISC CPU BASED ON MIPS

N.Alekya*
1
 ,P.Ganesh Kumar

2

1Department of ECE, Kakinada Institute of Engineering & Technology, Kakinada, AP, INDIA

alekhya.nakka@gmail.com 1
2Assistant Professor ,Department of ECE, Kakinada Institute of Engineering & Technology, Kakinada, AP, INDIA

Abstract: The main aim of the project is simulation and synthesis of the 32-bit RISC CPU based on MIPS. The project involves design of a

simple RISC processor and simulating it. A Reduced Instruction Set compiler (RISC) is a microprocessor that had been designed to perform a
small set of instructions, with the aim of increasing the overall speed of the processor .In this work, we analyze MIPS instruction format,
instruction data path, decoder module function and design theory based on RISC (Reduced Instruction Set Computer) CPU instruction set.
Furthermore, we use pipeline design process to simulate successfully, which involves instruction fetch (IF), instruction decoder (ID), execution
(EXE), data memory (MEM), write back (WB) modules of 32-bit CPU based on RISC CPU instruction set. Function of IF module is fetches the
instruction from memory. The function of ID stage is sends control commands i.e., instructions are sending to control unit and decoded here. The

EXE stage executes arithmetic. Main component of the EXE stage is ALU. The MEM stage is to fetch data from memory and store data to
memory, if instruction is not memory/IO instruction, result is sent to WB stage. At last WB stage charges of writing the resu lts, stores data and
input data to register file. The purpose of WB stage is to write data to destination register.The idea of this project was to create a RISC processor
as a building block in VHDL than later easily can be included in a larger design. It will be useful in systems where a problem is easy to solve in
software but hard to solve with control logic. However at a high level of complexity it is easier to implement the function in software. In this
project for simulation we use Modelsim for logical verification, and further synthesizing it on Xilinx-ISE tool using target technology and
performing placing & routing operation for system verification. The language we used here is VHDL, and tools required here are MODELSIM
III SE 6.4b – Simulation XILINX-ISE 10.1 – Synthesis. The applications are automatic robot control, bottling plant.

Keywords: RISC, MIPS,Simulation Synthesis ,Instruction Set,MODELSIM.s

INTRODUCTION

Risc Mips Features:

Processors are much faster than memories. For example, a

processor clocked at 100 MHz would like to access memory

in 10 nanoseconds, the period of its 100 MHz clock.

Unfortunately, the memory interfaced to the processor might

require 60 nanoseconds for an access. So, the processor

ends up waiting during each memory access, wasting

execution cycles.

To reduce the number of accesses to main memory,

designers added instruction and data cache to the processors.

A cache is a special type of high speed RAM where data and

the address of the data are stored. Whenever the processor

tries to read data from main memory, the cache is examined

first. If one of the addresses stored in the cache matches the

address being used for the memory read (called a hit), the

cache will supply the data instead. Cache is commonly ten
times faster than main memory, so you can see the

advantage of getting data in 10 nanoseconds instead of 60

nanoseconds. Only when we miss (i.e., do not find the

required data in the cache), does it take the full access time

of 60 nanoseconds. But this can only happen once. Since a

copy of the new data is written into the cache after a miss.

The data will be there the next time we need it. Instruction

cache is used to store frequently used instructions. Data

cache is used to store frequently used data. Implementing

fewer instructions and addressing modes on silicon reduces

the complexity of the instruction decoder, the addressing

logic, and the execution unit. This allows the machine to be
clocked at a faster speed, since less work needs to be done

each clock period.

RISC typically has large set of registers. The number of

registers available in a processor can affect performance the

same way a memory access does. A complex calculation

may require the use of several data values. If the data values

all reside in memory during the calculations, many memory

accesses must be used to utilize them. If the data values are

stored in the internal registers of the processor instead, their

access during calculations will be much faster. It is good

then to have lot of internal registers.

PREVIOUS WORK

The MIPS single-cycle processor performs the tasks of

instruction fetch, instruction decode, execution, memory

access and write-back all in one clock cycle. First the PC

value is used as an address to index the instruction memory

which supplies a 32-bit value of the next instruction to be
executed. This instruction is then divided into the different

fields shown in Table 2.1. The instructions opcode field bits

[31-26] are sent to a control unit to determine the type of

instruction to execute. The type of instruction then

determines which control signals are to be asserted and what

function the ALU is to perform, thus decoding the

instruction. The instruction register address fields $rs bits

[25 - 21], $rt bits [20 - 16], and $rd bits [15-11] are used to

address the register file. The register file supports two

independent register reads and one register write in one

clock cycle. The register file reads in the requested

addresses and outputs the data values contained in these
registers. These data values can then be operated on by the

ALU whose operation is determined by the control unit to

either compute a memory address (e.g. load or store),

compute an arithmetic result (e.g. add, and or slt), or

perform a compare (e.g. branch). If the instruction decoded

N.Alekya et al, Journal of Global Research in Computer Science,2 (9), September 2011, 20-24

© JGRCS 2011, All Rights Reserved 21

is arithmetic, the ALU result must be written to a register. If

the instruction decoded is a load or a store, the ALU result is

then used to address the data memory. The final step writes

the ALU result or memory value back to the register file.

Figure 1. MIPS Single-cycle Processor

SYSTEM OVERVIEW

Mips Pipelined Processor Vhdl Implementation:

Once the MIPS single-cycle VHDL implementation was

completed, our next task was to pipeline the MIPS

processor. Pipelining, a standard feature in RISC processors,

is a technique used to improve both clock speed and overall

performance. Pipelining allows a processor to work on

different steps of the instruction at the same time, thus more

instruction can be executed in a shorter period of time. For

example in the VHDL MIPS single-cycle implementation

above, the datapath is divided into different modules, where

each module must wait for the previous one to finish before

it can execute, thereby completing one instruction in one

long clock cycle. When the MIPS processor is pipelined,
during a single clock cycle each one of those modules or

stages is in use at exactly the same time executing on

different instructions in parallel. Figure 2 shows an example

of a MIPS single-cycle non-pipelined (a.) versus a MIPS

pipelined implementation (b.). The pipelined

implementation executes faster, keep in mind that both

implementations use the same hardware components.

Figure 2. Single-cycle non-pipelined (a) vs. pipelined execution (b)

The MIPS pipelined processor involves five steps; the

division of an instruction into five stages implies a five-
stage pipeline:

a. Instruction Fetch (IF): fetching the instruction from

the memory

b. Instruction Decode (ID): reading the registers and

decoding the instruction

c. Execution (EX): executing an operation or

calculating an address

d. Data Memory (MEM): accessing the data memory

e. Write Back (WB): writing the result into a register.

The key to pipelining the single-cycle implementation of the

MIPS processor is the introduction of pipeline registers that
are used to separate the datapath into the five sections IF,

ID, EX, MEM and WB. Pipeline registers are used to store

the values used by an instruction as it proceeds through the

subsequent stages. The MIPS pipelined registers are labeled

according to the stages they separate. (e.g. IF/ID, ID/EX,

EX/MEM, MEM/WB) Figure 3 shows and example of a

pipelined datapath excluding the control unit and control

signal lines.

N.Alekya et al, Journal of Global Research in Computer Science,2 (9), September 2011, 20-24

© JGRCS 2011, All Rights Reserved 22

Figure 3. MIPS Pipelined Processor Datapath

To implement the MIPS pipelined processor, pipeline

registers are placed into the corresponding VHDL modules
that generate the input to the particular pipeline register. For

example, the Instruction Fetch component will generate the

32-bit instruction and the PC+4 value and store them into

the IF/ID pipeline register. When that instruction moves to

the Instruction Decode stages it extracts those saved values

from the IF/ID pipeline register. Appendix F contains the

complete VHDL code used to implement the MIPS

pipelined processor data path. Appendices G shows an

example of MIPS processor pipelined being simulated.

DESIGN & IMPLEMENTATION

Introduct ion to Model Simulator :

Project Flow: A project is a collection mechanism for an

HDL design under specification or test. Even though you

don’t have to use projects in ModelSim, they may ease

interaction with the tool and are useful for organizing files
and specifying simulation settings. The following diagram

shows the basic steps for simulating a design within a

ModelSim project.

Figure 4. Project design flow

As you can see, the flow is similar to the basic simulation

flow. However, there are two important differences:

You do not have to create a working library in the project

flow; it is done for you automatically. Projects are

persistent. In other words, they will open every time you

invoke ModelSimunless you specifically close them.

Design Files for this Lesson: The sample design for this
lesson is a simple 8-bit, binary up-counter with an

associated testbench. The pathnames are as follows:

Verilog:

<install_dir>/examples/tutorials/verilog/basicSimulation/co

unter.v and tcounter.v

VHDL:

<install_dir>/examples/tutorials/vhdl/basicSimulation/coun

ter.vhd and tcounter.vhd

This lesson uses the Verilog files counter.v and tcounter.v.

If you have a VHDL license, use counter.vhd and
tcounter.vhd instead. Or, if you have a mixed license, feel

free to use the Verilog testbench with the VHDL counter or

vice versa.

Create the Working Design Library: Before you can

simulate a design, you must first create a library and

compile the source code into that library.

1. Create a new directory and copy the design files for this

lesson into it.

Start by creating a new directory for this exercise (in case

other users will be working with these lessons).

Verilog: Copy counter.v and tcounter.v files from

/<install_dir>/examples/tutorials/verilog/basicSimulation to
the new directory.

VHDL: Copy counter.vhd and tcounter.vhd files from

/<install_dir>/examples/tutorials/vhdl/basicSimulation to

the new directory.

2. Start ModelSim if necessary.

a. Type vsim at a UNIX shell prompt or use the ModelSim

icon in Windows. Upon opening ModelSim for the first

time, you will see the Welcome to ModelSim dialog. Click

Close.

b. Select File > Change Directory and change to the

directory you created in step 1.
3. Create the working library.

a. Select File > New > Library.

This opens a dialog where you specify physical and logical

names for the library (Figure 5). You can create a new

library or map to an existing library. We’ll be doing the

former.

Run the Simulation:

Now you will open the Wave window, add signals to it, then

run the simulation.

1. Open the Wave debugging window.

a. Enter view wave at the command line

You can also use the View > Wave menu selection to open

a Wave window.

The Wave window is one of several windows available for

debugging. To see a list of the other debugging windows,

select the View menu. You may need to move or resize the
windows to your liking. Window panes within the Main

window can be zoomed to occupy the entire Main window

N.Alekya et al, Journal of Global Research in Computer Science,2 (9), September 2011, 20-24

© JGRCS 2011, All Rights Reserved 23

or undocked to stand alone. For details, see Navigating the

Interface.

2. Add signals to the Wave window.

a. In the Workspace pane, select the sim tab.

b. Right-click test_counter to open a popup context menu.

c. Select Add > To Wave > All items in region (Figure 5).

All signals in the design are added to the Wave window.

Figure 5. Using the Popup Menu to Add Signals to Wave Window

3. Run the simulation.
a. Click the Run icon in the Main or Wave window toolbar.

The simulation runs for 100 ns (the default simulation

length) and waves are drawn in the Wave window.

b. Enter run 500 at the VSIM> prompt in the Main window.

The simulation advances another 500 ns for a total of 600 ns

(Figure 6).

Figure 6. Waves Drawn in Wave Window

c. Click the Run -All icon on the Main or Wave window

toolbar.The simulation continues running until you execute

a break command or it hits a statement in your code

(e.g., a Verilog $stop statement) that halts the simulation.

d. Click the Break icon. The simulation stops running.

RESULTS

Simulation Results:

The work presented in this Thesis describes a functional

FPGA implementation design of a MIPS single-cycle and

pipelined processor designed using VHDL. The VHDL

designs of the MIPS processor were all simulated to ensure

that the processors were functional and operated just as

described by Patterson and Hennessy. The results show first

the instruction memory initialization, which is used to fill

the instruction memory with the instructions to be executed,
which are indexed by the program counter (PC). The second

is the actual 32-bit instruction represented using

hexadecimal numbers. The third is the PC value used to

index the instruction memory to retrieve an instruction. The

next four columns are the MIPS instruction’s mnemonic

description. Finally last columns are the pseudo instructions

using the actual values used during the simulation.

Figure 7. Result of simulation

Synthesis Result:

The developed convolution project is simulated and verified

their functionality. Once the functional verification is done,

the RTL model is taken to the synthesis process using the

Xilinx ISE tool. In synthesis process, the RTL model will be

converted to the gate level net-list mapped to a specific

technology library. Here in this Spartan 3E family, many

different devices were available in the Xilinx ISE tool. The

target device is SPARTAN 2 FPGA kit. In order to

synthesis this design the device named as “XC3S100E” has

been chosen and the package as “TQ144” with the device
speed such as “5”.

RTL Schematic:

The RTL (Register Transfer Logic) can be viewed as black

box after synthesize of design is made. It shows the inputs

and outputs of the system. By double-clicking on the

diagram we can see gates, flip-flops and MUX.

N.Alekya et al, Journal of Global Research in Computer Science,2 (9), September 2011, 20-24

© JGRCS 2011, All Rights Reserved 24

Figure 8. RTL Schematic internal view

The above figure 8. Shows the top level block diagram that

contains the primary inputs and outputs of the design.

Device Utilization Summary:

This device utilization includes the following.

a. Logic Utilization

b. Logic Distribution

c. Total Gate count for the Design

Figure 9. Summary for the Device utilization time

The device utilization summery is shown above in which its
gives the details of number of devices used from the

available devices and also represented in %. Hence as the

result of the synthesis process, the device utilization in the

used device and package is shown above.

Timing Summary:

Speed Grade: -3 Minimum period: 3.203ns (Maximum
Frequency: 312.173MHz) Minimum input arrival time

before clock: 145.587ns Maximum output required time

after clock: 6.156ns Maximum combinational path delay:

6.662ns

In timing summery, details regarding time period and
frequency is shown are approximate while synthesize. After

place and routing is over, we get the exact timing summery.

Hence the maximum operating frequency of this synthesized

design is given as 18.970 MHz and the minimum period as

52.719 ns. OFFSET IN is the minimum input arrival time

before clock and OFFSET OUT is maximum output

required time after clock.

CONCLUSIONS

In this project it is observed that the RISC MIPS based

system is simulated using VHDL. The overall system is

simulated and synthesized, after synthesizing the system we

could get a statistical data about the number of input-output

buffers, the number of registers, number of flip-flops and
latches were used in the usage of FPGA tool. The modules

simulated are Accumulator, Buffer, Clock Generator,

Instruction Register, Multiplexer, Program Counter, Reset,

Control Logic Decoder, Arithmetic Logic Unit and the

overall system. Few instructions were executed and their

timing sequences were analyzed. It is found that an each

instruction taken 100ps.It shows that the different operations

of the instruction including the decoding and execution

comes to 40ns in the overall system. Therefore we conclude

that the behavior shows, the system is working as RISC as

instruction will be executed within a single clock cycle.

REFERENCES

[1]. Bai-ZhongYing, Computer Organization, Science Press,

2000.11.

[2]. Wang-AiYing, Organization and Structure of Computer,

Tsinghua University Press, 2006.

[3]. Wang-YuanZhen, IBM-PC Macro Asm Program, Huazhong

University of Science and Technology Press, 1996.9.

[4]. MIPS Technologies, Inc. MIPS32™ Architecture For

ProgrammersVolume II: The MIPS32™ Instruction

Set，June 9, 2003.

[5]. Zheng-WeiMin, Tang-ZhiZhong. Computer System

Structure (The second edition), Tsinghua University Press,

2006.

[6]. Pan-Song, Huang-JiYe, SOPC Technology Utility Tutorial,

Tsinghua University Press, 2006.

[7]. MIPS32 4KTMProcessor Core Family Software User's

Manual, MIPS Technologies Inc.

[8]. Mo-JianKun, Gao-JianSheng,Computer Organization,

Huazhong University of Science and Technology Press,

1996.

[9]. Zhang-XiuJuan, Chen-XinHua, EDA Design and emulation

Practice [M]. BeiJing, Engine Industry Press. 2003.

[10]. "IEEE Standard of Binary Floating-Point Arithmetic" IEEE

Standard754, IEEE Computer Society, 1985.

[11]. Yi-Kui, Ding-YueHua, Application of AMCCS5933

Controller in PCI BUS, DCABES2007, 20077.

