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Abstract— The Complexity of handling the complex flow logic 

has become the major impact in parallel programming. The two 

main problems associated with the Scheduling of Superscalar 

Processor are interrupt precision and implementing multiple 

levels of Branch Prediction. The proposed work implements the 

Speculative Thread Level parallelism Technique on superscalar 

Processor, as an alternative source of parallelism which can 

boost the performance for applications, by overcoming the 

causes using cache coherence protocols and thus prevent the 

collision due to dependencies. To address this critical need, a 

Register transfer level (RTL) model of a superscalar micro 

architecture have been developed with similar complexity of a 

current generation processor. The RTL model is written in 

Verilog and is fully synthesizable. The RTL model is tightly 

integrated with a C functional simulator to assist and accelerate 

verification. The dissertation also proposes novel architecture 

and compiler techniques to efficiently extract speculative 

parallelism from multiple loop levels. 
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I. INTRODUCTION  

Superscalar Processors exploit Instruction level 

parallelism (ILP) depending on the instruction processing 

and the dependencies between those instructions and in its 

issue process to different processing units [7]. The 

scheduling of those instructions can be done either 

statically or dynamically. Static approach that rely much 

more on software. Dynamic approach that depend on 

hardware to locate parallelism. In dynamic scheduling the 

dynamic stream of instructions is analyzed and the 

dependencies are found from the instructions [7].  The 

out-of-order execution of multiple instructions in issue 

and execution unit is the most general form [1].  

The implementation has been done in such a manner to 

perform operation at faster clock cycle and to maximize 

the number of instructions issued per cycle. The proposed 

work implements the coarse-grain unit of parallelism and 

the resultant Instruction per cycle (IPC) is eventually 

much lower than the processor performance level. Thus 

the hurdles can be handled efficiently based on the 

dependencies between read and write process [1]. Data 

value speculation has been proposed to relieve the 

penalties due to data dependencies and minimize their 

impact on the performance of the processor by means of 

predicting the input/output operands of instructions [8].In 

recent studies [7] [6], it has been shown that the 

performance impact of this technique for superscalar 

processors is reasonable and its potential improvement 

approaches a linear function of the prediction accuracy. 

On the other hand, its potential is much higher for 

speculative multithreaded architectures. Other critical 

components are the issue and rename logic. In order to 

increase the performance, some alternative micro 

architecture has been proposed by means of exploiting 

coarse-grain parallelism in addition to the instruction-

level (fine-grain) parallelism [5]. These micro 

architectures split programs into threads and then, they 

speculatively execute them concurrently. This kind of 

parallelism is referred as Speculative Thread-Level 

Parallelism [3]. Threads are speculatively executed 

because they are both control and data dependent on 

previous threads, since independent threads are hard to 

find in many non-numeric applications.  

 

These micro architectures include support to roll-back the 

execution in case of either a control or a data dependence 

misspeculation occurrence.  
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A. Overview 

All micro architectures provide support for multiple 

contexts and using appropriate mechanisms to predict 

values produced by one thread which is consumed by 

another thread. The difference lies in splitting of program 

into threads. The compiler is responsible for splitting the 

program into threads. Speculative thread level parallelism 

has significant potential to boost performance have been 

shown. However, most of them use different heuristics to 

partition a sequential instruction stream into speculative 

threads. 

B. Speculative Thread Level Parallelism 
 

Thread-Level Speculation (TLS) is an aggressive 

parallelization technique that is applied to regions of code 

which although contain a good amount of parallelism, 

cannot be statically proven to conserve the sequential 

semantics when it is executed in parallel [3].  With TLS, 

threads concurrently execute iteration of a loop out of 

sequential order even in the presence of true dependences.  

They use software/hardware structures that are speculative 

storage, to trace the dependencies information by storing 

it and to regress to a safe point and restart the computation 

upon the occurrence of a dependency violation (rollback 

recovery) [6].  

 

In order to guarantee correct sequence of execution, 

threads update their changes into the global non 

speculative storage only when it is determined that the 

locations it read-from and wrote-to do not generate a 

dependency-violation. The usual implementation is to 

have the threads buffer their writes and commit them 

sequentially when they become master. Hardware 

approaches employ a modified cache coherency protocol 

to detect the occurrence of inter-thread data dependencies 

and initiate a rollback. In servicing a rollback the 

speculative state needs to be cleared and the threads 

affected by the violation are restarted to carry out the 

cancelled iterations. 

 

II. DESIGN OF SPECULATIVE OUT-OF-ORDER SUPERSCALAR 

PROCESSOR 

In out-of-order execution, the instruction stream is not 

executed in the same order as that of original program 

sequence and it gets executed based on the availability of 

source code operands. In this project as a part the design 

and implementation of canonical pipeline stages of a 

superscalar micro architecture was developed, by 

inheriting from commercial superscalar based designs [8]. 

Although, the RTL model of the individual pipeline stage 

is parameterized by the width of the stage and the sizes of 

specialized memory structures within the stage, a specific 

micro architecture configuration has been chosen as a 

starting point to understand the design complexity 

involved. The Table-1 depicts the architectural 

configuration as an overview of the complexity model of 

the processor. Instruction Fetch is will get the instruction 

stream as input sequentially. Every cycle, the program 

counter (PC) is incremented sequentially, till the end of 

the control instruction in the instruction stream [7]. 

TABLE I 
 

Configuration for Superscalar processor Architecture 

 

 

STAGE DESCRIPTION 
Fetch 4-Wide 

128-Entry Bimodal Branch 

predictor 

16-Instruction Fetch Buffer 

Decode 4-Wide 

ISA(Similar to MIPS) 

Rename 4-Wide 

32-Entry Rename map table 

Dispatch 4-Wide 

Issue 4-Wide issue 

32-Entry Issue Queue 

Register Read 4-Wide 

128-Physical Register File 

Execute 1-Simple ALU,1-Branch ALU,1-

Complex ALU 

Load-Store Unit 16-Entry Load Queue 

16-Entry Store Queue 

Write Back 4-Wide 

Retire 4-Wide 

128-Entry Active List 
 

 
A. Stages of Superscalar processor 

The major components of the architecture are given and 

there are major units, that is  Fetch Unit, Rename Unit, 

Issue Unit, and Back end Unit. In Fig-1, the architecture 

of the proposed superscalar processor is described. 

                                            
Fig-1:  High Level Block Diagram of Superscalar Processor 

B. Instruction Fetch 
 

In a program, conditional branches tend to occur more 

frequently than other control instructions [5]. The branch 

prediction mechanism has three major structures with 

random logic, branch target address (BTA), branch 

predictor (BP), and return address stack (RAS) [8]. On 

considering the cycle time, the fetch stage has two 

important timing paths, accessing the interleaved 

instruction cache for reading two aligned cache blocks. 

The complexity of accessing the cache would increase 

with increasing the size and the set associativity of the 

cache [3].  
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Generating next PC using information from the BTA,  BP, 

and RAS for a group of instructions that have been 

fetched. The complexity of the next PC logic would 

increase with a larger BTA, a more complicated or larger 

branch predictor, or wider fetch bandwidth. Moreover, it 

is important to generate the next PC in one cycle to avoid 

losing cycles on every predicted-taken branch. 

 

If the BTA misses for the control instruction in a cycle, 

the next cycle of process generates a selection recovery 

signal and selection recovery target address for the 

previous stage [8]. If an instruction happens to be a 

predicted-taken branch in the fetch block, subsequent 

instructions are discarded. Each stage has the FIFO Buffer 

to update the control instructions in the proper sequential 

order and its status which is called Control Transfer queue 

(CT queue).After a control instruction at the head of the 

FIFO retires, the CT queue updates the BP with the 

computed direction [7]. 

  
Fig-2: Instruction Fetch stage 

 

This leads to in-order update of the branch prediction 

structure. Instruction alignments, extracting the fetch 

block, pre-decoding, and generating the recovery signal 

are serialized logic and this working is explained in Fig-2. 

The instruction queue serves two purposes: 

 It allows instruction fetching, even though the 

rest of the front-end is stalled because of a 

hardware resource limitation 

 It simplifies decode, rename and dispatch logic 

by always providing a fixed number of 

instructions. 

 

C. Instruction Decode 

Decode unit performs the mapping of parallel instructions 

and send it to the instruction queue based on allocation for 

the particular instruction [7].  

Decoding stops if the active list or a queue becomes full, 

but there are very few decode restrictions that depend on 

the type of instruction being decoded. The principal 

expectation involves integer multiply and divide 

instructions. Their results go into two special registers. No 

other instructions have more than one result register.  

 

D. Register Renaming 
 

Register renaming [2] removes the false 

dependencies among instructions which are 

limited architectural registers. Fig-3 depicts 

it’s function. Fundamentally, the 

dependencies between instructions are analyzed 

and process is done, a dynamic instruction 

stream has three types of data dependencies: 

 True dependency, where the source 

register of a younger instruction 

depends on the outcome of another, 

which is the older instruction in the 

dynamic instruction stream. 

 Output dependency, where the 

destination registers of a younger 

instruction is the same as the 

destination register of another, which 

is the older instruction in the dynamic 

instruction stream. 

 Anti-dependency, where the destination 

register of a younger instruction is 

the same as the source register of 

another, which is the older instruction 

in the dynamic instruction stream. 

 

 
 

Fig-3: Register renaming Logic 
 

E. Issue 

The Issue stage buffers the renamed instructions and 

selects instructions for execution based on the availability 

of their source operands [4]. The maximum buffer size is 

referred to as the issue window, and the maximum 

number of instructions selected for parallel execution in a 

cycle is referred to as the issue width. The issue window 

and issue width are the fundamental characteristics of the 

issue stage, and determine its logic complexity [2]. In 

summary, an Issue stage consists of two major operations: 

wakeup and select [3]. The wakeup operation is 

dependence resolution performed in the issue window, 

and the select operation is arbitrating among ready-to-

execute instructions in the issue window. In our design, 
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the issue window is centralized, and the Issue stage is 

pipelined between wakeup and select logic.  

 

Each functional unit executes a different type of integer 

instruction, and instructions are associated with their 

functional unit type during the decode stage [5]. The 

complexity of the wakeup operation grows with issue 

window size and the number of wakeup ports [6]. 

 

F. Execute  

The source register specifier of an issued instruction, 

index into the PRF [5] to read the corresponding values, 

At the same time, source register specifier are also 

compared with the Write back destination register 

specifier to detect the scenario whereby a producer 

instruction’s result needs to be directly updated to a 

consumer instruction .The functional unit in the execute 

stage performs an arithmetic or logic operation on the 

source operands of an instruction [4].  
 

 

G. Write Back 
 

The Write back stage contains the latches holding the 

results from the execute stage, which serve as the source 

for feeding the logic path. The Logic path forwards the 

result values from the executed instructions to the 

dependent instructions, to support optimal execution of 

the producer and its dependent instructions in consecutive 

cycles [6]. The Write back stage also acts as the source for 

branch misprediction signals [5].  

 

H. Retire 
 

Although instructions execute out-of-order, they update 

the architectural processor state in the correct program 

order to maintain the sequential execution model [7].The 

Retire stage also maintains an Architectural Map Table, 

containing mappings between architectural registers and 

physical registers for committed versions of architectural 

registers. When an instruction commits, the Active List 

updates the map table with the instruction’s physical 

destination register mapping and releases the previously 

mapped physical register [6].  

 

III. EXPERIMENTAL RESULT AND DISCUSSION 

 

A complex micro architecture might enhance IPC, but at 

the same time could increase the propagation delay. For 

instance, increasing the size of the issue window can 

boost IPC for applications with abundant ILP, but at the 

same time, clock rate may decrease to accommodate the 

larger content addressable memory. In general, any 

attempt to increase micro architectural complexity to get 

better IPC has a direct impact on the propagation delay. 

 

The applications are experimentally analyzed in the 

superscalar processor using Modelsim as the simulation 

tool and Xilinx PlanAhead 14.4 is used for its resource 

estimation and virtex-5 is used for implementation. The 

applications used in this study are compress performs data 

compression and decompression and it carries certain loop 

dependencies occur frequently. The jpeg and mpeg 

performs various algorithms on images.  

 

In nqueen complexity level for the computation is very 

large and it has complex dependencies that either hoist 

them outside of the loop or else explicitly forward them 

using wait-signal synchronization. This chapter contains 

the results for the execution of processor results with out-

of-order execution. 

 

 

A. Performance Measure 
 

The Performance measure of the speculative Execution of 

the out of order superscalar processor, which uses the 

better branch prediction mechanism in order to overcome 

the complexities in the dependencies due to branch and 

jump instruction within and outside the loop, is analyzed 

hereby using the comparison graphs. The comparison 

Table-2 describes the Branch prediction accuracy by 

taking the average between the correctly predicted branch 

and the mispredicted branch from the series of execution. 

In the Prediction accuracy graph Fig-4, the rate of branch 

prediction accuracy increased by 15% than the static and 

voting method stated in earlier works.  
TABLE II 

Comparison Table for Branch Prediction Accuracy 
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Fig-4: Comparison graph - Branch Prediction Accuracy 

 

In this the difference between the prediction rate 

decreases in the cache coherence method and it is clearly 

explained in the graph, that is if the difference rate 

decrease, the number of misprediction among the 

predicted branch and jump calls is less, so the prediction 

accuracy will increased automatically and leads to less 

miss match. In the following comparison graph Fig-5 the 

performance can be calculated in terms of the processing 

cycle. The comparison of performance done with the 

baseline stages of this complex effective superscalar 

processor, that is the average IPC of the pipeline and 

simple superscalar processor is taken and its performance 

TASKS STATIC 

PREDICTIO

N 

VOTING 

METHO

D 

CACHE 

COHERENCE 

METHOD 

compress 0.81 0.87 0.4 

jpeg 0.89 0.91 0.5 

mpeg 0.75 0.80 0.37 

nqueen 0.91 1 0.46 
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is calculated and it is put side by side with this out-of-

order execution processor. 

 

The drop in IPC does show the same trend as it shows in 

the C simulator. The average drop in IPC among these 4 

tasks was seen to be around 3%. Thus, the effects of 

pipelining on accuracy by out-order speculative execution 

results in minimization of IPC and thus decrease the delay 

to complete the processor execution. Thus the 

performance efficiency of processor execution increased.   

Table-3 summarizes the performance of each application 

on baseline architecture that implements our coherence 

scheme.  
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Fig-5: Comparison graph - performance of the processor 
                                      TABLE III 

 Performance impact of speculative out-of-order Processor 

 
 

 

 

All the speedups and the other statistics related to the 

processor are with respect to the original executables 

without any overheads running on the processor. Hence 

our speedups are absolute speedups and not relative 

speedups. The range of increase in the overall speed up 

and the parallel execution coverage percentage of increase 

is given and stated below. The overall speed up limited by 

the execution coverage that is the fraction of original 

execution time was parallelized. It is stated from the table 

5.2 that the speedup of the process increased up to the rate 

of 2 to 3 and the parallel execution coverage rate shows 

that the processor execution speedup will be considerably 

not affected by the complex loop and branch 

dependencies in the program. 
 

Thus it is concluded that the cache coherence scheme 

which is used to handle dependencies among the tasks 

perform the better work in combination with the out-of-

order execution of the program sequence, Individually and 

as a whole the methods used in this speculative out-of-

order superscalar processor increases the overall speed up, 

parallel coverage and decreases the delay and thus the 

performance efficiency is potentially effective. 

 

 

 

IV. CONCLUSION 

 

Speculative out-of-order execution of the superscalar 

processor, the proposed work uses the cache coherence 

mechanism to predict and to manage the branch 

occurrence while processing the instructions and the 

results of this execution increased the efficiency than the 

previous methods used for the superscalar execution by 

considerable performance. The results are furnished for 

different task programs and their resource utilization, 

power efficiency and the overhead is also limited using 

this out-of-order execution. 

 

 In our proposed method, the performance of the 

processor increased by 15% and the processing speed also 

increases. The main impact of handling the complex 

instruction which  was done by the branch prediction 

mechanism achieved 75% of accuracy in predicting the 

branch thus the speed up of the processor increases. The 

Future work is to extend the micro architecture of the 

superscalar processor in order to perform task level 

parallelism implemented with the soft processors and to 

increase the scalability to perform the parallel processing 

with the deterministic number of processor and to attain 

the reach out performance. 
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