
ISSN (Online) : 2319 - 8753
 ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

Volume 3, Special Issue 3, March 2014

2014 International Conference on Innovations in Engineering and Technology (ICIET’14)

On 21st & 22nd March Organized by

K.L.N. College of Engineering, Madurai, Tamil Nadu, India

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1473

Design of Out-Of-Order Superscalar

Processor with Speculative Thread

Level Parallelism

A.Kamaraj
#1

, X.Sharly Monica
#2

#1
Department of ECE, Mepco Schlenk Engineering College, Sivakasi,

Virudhu Nagar District, Tamilnadu, India.

#2
Department of ECE, Mepco Schlenk Engineering College, Sivakasi,

Virudhu Nagar District, Tamilnadu, India.

Abstract— The Complexity of handling the complex flow logic

has become the major impact in parallel programming. The two

main problems associated with the Scheduling of Superscalar

Processor are interrupt precision and implementing multiple

levels of Branch Prediction. The proposed work implements the

Speculative Thread Level parallelism Technique on superscalar

Processor, as an alternative source of parallelism which can

boost the performance for applications, by overcoming the

causes using cache coherence protocols and thus prevent the

collision due to dependencies. To address this critical need, a

Register transfer level (RTL) model of a superscalar micro

architecture have been developed with similar complexity of a

current generation processor. The RTL model is written in

Verilog and is fully synthesizable. The RTL model is tightly

integrated with a C functional simulator to assist and accelerate

verification. The dissertation also proposes novel architecture

and compiler techniques to efficiently extract speculative

parallelism from multiple loop levels.

Keywords— Branch Prediction, Thread Level Parallelism,

Speculative Execution, Cache coherence Protocol

I. INTRODUCTION

Superscalar Processors exploit Instruction level

parallelism (ILP) depending on the instruction processing

and the dependencies between those instructions and in its

issue process to different processing units [7]. The

scheduling of those instructions can be done either

statically or dynamically. Static approach that rely much

more on software. Dynamic approach that depend on

hardware to locate parallelism. In dynamic scheduling the

dynamic stream of instructions is analyzed and the

dependencies are found from the instructions [7]. The

out-of-order execution of multiple instructions in issue

and execution unit is the most general form [1].

The implementation has been done in such a manner to

perform operation at faster clock cycle and to maximize

the number of instructions issued per cycle. The proposed

work implements the coarse-grain unit of parallelism and

the resultant Instruction per cycle (IPC) is eventually

much lower than the processor performance level. Thus

the hurdles can be handled efficiently based on the

dependencies between read and write process [1]. Data

value speculation has been proposed to relieve the

penalties due to data dependencies and minimize their

impact on the performance of the processor by means of

predicting the input/output operands of instructions [8].In

recent studies [7] [6], it has been shown that the

performance impact of this technique for superscalar

processors is reasonable and its potential improvement

approaches a linear function of the prediction accuracy.

On the other hand, its potential is much higher for

speculative multithreaded architectures. Other critical

components are the issue and rename logic. In order to

increase the performance, some alternative micro

architecture has been proposed by means of exploiting

coarse-grain parallelism in addition to the instruction-

level (fine-grain) parallelism [5]. These micro

architectures split programs into threads and then, they

speculatively execute them concurrently. This kind of

parallelism is referred as Speculative Thread-Level

Parallelism [3]. Threads are speculatively executed

because they are both control and data dependent on

previous threads, since independent threads are hard to

find in many non-numeric applications.

These micro architectures include support to roll-back the

execution in case of either a control or a data dependence

misspeculation occurrence.

Design of Out-of-Order Superscalar Processor with Speculative…

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1474

A. Overview

All micro architectures provide support for multiple

contexts and using appropriate mechanisms to predict

values produced by one thread which is consumed by

another thread. The difference lies in splitting of program

into threads. The compiler is responsible for splitting the

program into threads. Speculative thread level parallelism

has significant potential to boost performance have been

shown. However, most of them use different heuristics to

partition a sequential instruction stream into speculative

threads.

B. Speculative Thread Level Parallelism

Thread-Level Speculation (TLS) is an aggressive

parallelization technique that is applied to regions of code

which although contain a good amount of parallelism,

cannot be statically proven to conserve the sequential

semantics when it is executed in parallel [3]. With TLS,

threads concurrently execute iteration of a loop out of

sequential order even in the presence of true dependences.

They use software/hardware structures that are speculative

storage, to trace the dependencies information by storing

it and to regress to a safe point and restart the computation

upon the occurrence of a dependency violation (rollback

recovery) [6].

In order to guarantee correct sequence of execution,

threads update their changes into the global non

speculative storage only when it is determined that the

locations it read-from and wrote-to do not generate a

dependency-violation. The usual implementation is to

have the threads buffer their writes and commit them

sequentially when they become master. Hardware

approaches employ a modified cache coherency protocol

to detect the occurrence of inter-thread data dependencies

and initiate a rollback. In servicing a rollback the

speculative state needs to be cleared and the threads

affected by the violation are restarted to carry out the

cancelled iterations.

II. DESIGN OF SPECULATIVE OUT-OF-ORDER SUPERSCALAR

PROCESSOR

In out-of-order execution, the instruction stream is not

executed in the same order as that of original program

sequence and it gets executed based on the availability of

source code operands. In this project as a part the design

and implementation of canonical pipeline stages of a

superscalar micro architecture was developed, by

inheriting from commercial superscalar based designs [8].

Although, the RTL model of the individual pipeline stage

is parameterized by the width of the stage and the sizes of

specialized memory structures within the stage, a specific

micro architecture configuration has been chosen as a

starting point to understand the design complexity

involved. The Table-1 depicts the architectural

configuration as an overview of the complexity model of

the processor. Instruction Fetch is will get the instruction

stream as input sequentially. Every cycle, the program

counter (PC) is incremented sequentially, till the end of

the control instruction in the instruction stream [7].

TABLE I

Configuration for Superscalar processor Architecture

STAGE DESCRIPTION
Fetch 4-Wide

128-Entry Bimodal Branch

predictor

16-Instruction Fetch Buffer

Decode 4-Wide

ISA(Similar to MIPS)

Rename 4-Wide

32-Entry Rename map table

Dispatch 4-Wide

Issue 4-Wide issue

32-Entry Issue Queue

Register Read 4-Wide

128-Physical Register File

Execute 1-Simple ALU,1-Branch ALU,1-

Complex ALU

Load-Store Unit 16-Entry Load Queue

16-Entry Store Queue

Write Back 4-Wide

Retire 4-Wide

128-Entry Active List

A. Stages of Superscalar processor

The major components of the architecture are given and

there are major units, that is Fetch Unit, Rename Unit,

Issue Unit, and Back end Unit. In Fig-1, the architecture

of the proposed superscalar processor is described.

Fig-1: High Level Block Diagram of Superscalar Processor

B. Instruction Fetch

In a program, conditional branches tend to occur more

frequently than other control instructions [5]. The branch

prediction mechanism has three major structures with

random logic, branch target address (BTA), branch

predictor (BP), and return address stack (RAS) [8]. On

considering the cycle time, the fetch stage has two

important timing paths, accessing the interleaved

instruction cache for reading two aligned cache blocks.

The complexity of accessing the cache would increase

with increasing the size and the set associativity of the

cache [3].

Design of Out-of-Order Superscalar Processor with Speculative…

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1475

Generating next PC using information from the BTA, BP,

and RAS for a group of instructions that have been

fetched. The complexity of the next PC logic would

increase with a larger BTA, a more complicated or larger

branch predictor, or wider fetch bandwidth. Moreover, it

is important to generate the next PC in one cycle to avoid

losing cycles on every predicted-taken branch.

If the BTA misses for the control instruction in a cycle,

the next cycle of process generates a selection recovery

signal and selection recovery target address for the

previous stage [8]. If an instruction happens to be a

predicted-taken branch in the fetch block, subsequent

instructions are discarded. Each stage has the FIFO Buffer

to update the control instructions in the proper sequential

order and its status which is called Control Transfer queue

(CT queue).After a control instruction at the head of the

FIFO retires, the CT queue updates the BP with the

computed direction [7].

Fig-2: Instruction Fetch stage

This leads to in-order update of the branch prediction

structure. Instruction alignments, extracting the fetch

block, pre-decoding, and generating the recovery signal

are serialized logic and this working is explained in Fig-2.

The instruction queue serves two purposes:

 It allows instruction fetching, even though the

rest of the front-end is stalled because of a

hardware resource limitation

 It simplifies decode, rename and dispatch logic

by always providing a fixed number of

instructions.

C. Instruction Decode

Decode unit performs the mapping of parallel instructions

and send it to the instruction queue based on allocation for

the particular instruction [7].

Decoding stops if the active list or a queue becomes full,

but there are very few decode restrictions that depend on

the type of instruction being decoded. The principal

expectation involves integer multiply and divide

instructions. Their results go into two special registers. No

other instructions have more than one result register.

D. Register Renaming

Register renaming [2] removes the false

dependencies among instructions which are

limited architectural registers. Fig-3 depicts

it’s function. Fundamentally, the

dependencies between instructions are analyzed

and process is done, a dynamic instruction

stream has three types of data dependencies:

 True dependency, where the source

register of a younger instruction

depends on the outcome of another,

which is the older instruction in the

dynamic instruction stream.

 Output dependency, where the

destination registers of a younger

instruction is the same as the

destination register of another, which

is the older instruction in the dynamic

instruction stream.

 Anti-dependency, where the destination

register of a younger instruction is

the same as the source register of

another, which is the older instruction

in the dynamic instruction stream.

Fig-3: Register renaming Logic

E. Issue

The Issue stage buffers the renamed instructions and

selects instructions for execution based on the availability

of their source operands [4]. The maximum buffer size is

referred to as the issue window, and the maximum

number of instructions selected for parallel execution in a

cycle is referred to as the issue width. The issue window

and issue width are the fundamental characteristics of the

issue stage, and determine its logic complexity [2]. In

summary, an Issue stage consists of two major operations:

wakeup and select [3]. The wakeup operation is

dependence resolution performed in the issue window,

and the select operation is arbitrating among ready-to-

execute instructions in the issue window. In our design,

Design of Out-of-Order Superscalar Processor with Speculative…

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1476

the issue window is centralized, and the Issue stage is

pipelined between wakeup and select logic.

Each functional unit executes a different type of integer

instruction, and instructions are associated with their

functional unit type during the decode stage [5]. The

complexity of the wakeup operation grows with issue

window size and the number of wakeup ports [6].

F. Execute

The source register specifier of an issued instruction,

index into the PRF [5] to read the corresponding values,

At the same time, source register specifier are also

compared with the Write back destination register

specifier to detect the scenario whereby a producer

instruction’s result needs to be directly updated to a

consumer instruction .The functional unit in the execute

stage performs an arithmetic or logic operation on the

source operands of an instruction [4].

G. Write Back

The Write back stage contains the latches holding the

results from the execute stage, which serve as the source

for feeding the logic path. The Logic path forwards the

result values from the executed instructions to the

dependent instructions, to support optimal execution of

the producer and its dependent instructions in consecutive

cycles [6]. The Write back stage also acts as the source for

branch misprediction signals [5].

H. Retire

Although instructions execute out-of-order, they update

the architectural processor state in the correct program

order to maintain the sequential execution model [7].The

Retire stage also maintains an Architectural Map Table,

containing mappings between architectural registers and

physical registers for committed versions of architectural

registers. When an instruction commits, the Active List

updates the map table with the instruction’s physical

destination register mapping and releases the previously

mapped physical register [6].

III. EXPERIMENTAL RESULT AND DISCUSSION

A complex micro architecture might enhance IPC, but at

the same time could increase the propagation delay. For

instance, increasing the size of the issue window can

boost IPC for applications with abundant ILP, but at the

same time, clock rate may decrease to accommodate the

larger content addressable memory. In general, any

attempt to increase micro architectural complexity to get

better IPC has a direct impact on the propagation delay.

The applications are experimentally analyzed in the

superscalar processor using Modelsim as the simulation

tool and Xilinx PlanAhead 14.4 is used for its resource

estimation and virtex-5 is used for implementation. The

applications used in this study are compress performs data

compression and decompression and it carries certain loop

dependencies occur frequently. The jpeg and mpeg

performs various algorithms on images.

In nqueen complexity level for the computation is very

large and it has complex dependencies that either hoist

them outside of the loop or else explicitly forward them

using wait-signal synchronization. This chapter contains

the results for the execution of processor results with out-

of-order execution.

A. Performance Measure

The Performance measure of the speculative Execution of

the out of order superscalar processor, which uses the

better branch prediction mechanism in order to overcome

the complexities in the dependencies due to branch and

jump instruction within and outside the loop, is analyzed

hereby using the comparison graphs. The comparison

Table-2 describes the Branch prediction accuracy by

taking the average between the correctly predicted branch

and the mispredicted branch from the series of execution.

In the Prediction accuracy graph Fig-4, the rate of branch

prediction accuracy increased by 15% than the static and

voting method stated in earlier works.
TABLE II

Comparison Table for Branch Prediction Accuracy

0

0.2

0.4

0.6

0.8

1

1.2

compress jpeg mpeg nqueen

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

Tasks

Static
Prediction

Voting

Cache
coherence

Fig-4: Comparison graph - Branch Prediction Accuracy

In this the difference between the prediction rate

decreases in the cache coherence method and it is clearly

explained in the graph, that is if the difference rate

decrease, the number of misprediction among the

predicted branch and jump calls is less, so the prediction

accuracy will increased automatically and leads to less

miss match. In the following comparison graph Fig-5 the

performance can be calculated in terms of the processing

cycle. The comparison of performance done with the

baseline stages of this complex effective superscalar

processor, that is the average IPC of the pipeline and

simple superscalar processor is taken and its performance

TASKS STATIC

PREDICTIO

N

VOTING

METHO

D

CACHE

COHERENCE

METHOD

compress 0.81 0.87 0.4

jpeg 0.89 0.91 0.5

mpeg 0.75 0.80 0.37

nqueen 0.91 1 0.46

Design of Out-of-Order Superscalar Processor with Speculative…

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1477

is calculated and it is put side by side with this out-of-

order execution processor.

The drop in IPC does show the same trend as it shows in

the C simulator. The average drop in IPC among these 4

tasks was seen to be around 3%. Thus, the effects of

pipelining on accuracy by out-order speculative execution

results in minimization of IPC and thus decrease the delay

to complete the processor execution. Thus the

performance efficiency of processor execution increased.

Table-3 summarizes the performance of each application

on baseline architecture that implements our coherence

scheme.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

IP
C

Tasks

pipeline

superscalar

out-of-order
execution

Fig-5: Comparison graph - performance of the processor
 TABLE III

 Performance impact of speculative out-of-order Processor

All the speedups and the other statistics related to the

processor are with respect to the original executables

without any overheads running on the processor. Hence

our speedups are absolute speedups and not relative

speedups. The range of increase in the overall speed up

and the parallel execution coverage percentage of increase

is given and stated below. The overall speed up limited by

the execution coverage that is the fraction of original

execution time was parallelized. It is stated from the table

5.2 that the speedup of the process increased up to the rate

of 2 to 3 and the parallel execution coverage rate shows

that the processor execution speedup will be considerably

not affected by the complex loop and branch

dependencies in the program.

Thus it is concluded that the cache coherence scheme

which is used to handle dependencies among the tasks

perform the better work in combination with the out-of-

order execution of the program sequence, Individually and

as a whole the methods used in this speculative out-of-

order superscalar processor increases the overall speed up,

parallel coverage and decreases the delay and thus the

performance efficiency is potentially effective.

IV. CONCLUSION

Speculative out-of-order execution of the superscalar

processor, the proposed work uses the cache coherence

mechanism to predict and to manage the branch

occurrence while processing the instructions and the

results of this execution increased the efficiency than the

previous methods used for the superscalar execution by

considerable performance. The results are furnished for

different task programs and their resource utilization,

power efficiency and the overhead is also limited using

this out-of-order execution.

 In our proposed method, the performance of the

processor increased by 15% and the processing speed also

increases. The main impact of handling the complex

instruction which was done by the branch prediction

mechanism achieved 75% of accuracy in predicting the

branch thus the speed up of the processor increases. The

Future work is to extend the micro architecture of the

superscalar processor in order to perform task level

parallelism implemented with the soft processors and to

increase the scalability to perform the parallel processing

with the deterministic number of processor and to attain

the reach out performance.

REFERENCES

[1]. Y. Etsion et al., “Task Superscalar: An Out-of-Order Task
Pipeline,” Proc. IEEE/ACM 43rd Ann. Int’l Symp.

Microarchitecture (MICRO), pp. 89-100, 2012.

[2]. J.C. Jenista et al., “OoOJava: An Out-of-Order Approach to

Parallel Programming,” Proc. Second USENIX Conf, Hot
Topics in Parallelism (Hot Par ’10), 2010.

[3]. C.H Chen and K.S.Hsiao, “Scalable Dynamic Instruction

Scheduler through Wakw-Up Spatial Locality,” IEEE Trans.
Computer, vol. 56, no. 11, pp. 1534- 1548, Nov-2007.

[4]. M. Labrecque and G. Steffan, “Improving Pipelined Soft
Processors with Multithreading,” Proc. Int’l Conf. Field

Programmable Logic and Applications (FPL ’07), 2007.

[5] T.N. Buti et al., “Organization and Implementation of the
Register-Renaming Mapper for Out-of-Order IBM POWER4

Processors,” IBM J. Research and Development, vol. 49, no.

1, pp. 167-188, 2005.

[6]. M.A Ramirez et al., “Direct Instruction Wakeup for Out-of-
Order Processors, “Proc. Innovative Architecture for Future

Generation High-Performance Processors and Systems

(IWIA ’04), pp. 2-9, 2004.

APPLICATION OVERALL

SPEEDUP

PARALLEL

EXECUTION

COVERAGE

compress 2.98 66.72%

jpeg 1.99 52.37%

mpeg 2.66 46.63%

nqueen 2.84 45.55%

Design of Out-of-Order Superscalar Processor with Speculative…

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1478

[7]. J. Shen and M. Lipasti, Modern Processor Design:
Fundamentals of Superscalar Processors. McGraw-Hill,

2004.

