
Volume 2, No. 2, February 2011

Journal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 17

Engineering of a Quicksort Partitioning Algorithm

D.Abhyankar*

1
 and M.Ingle

2

School of Computer Science & IT

Devi Ahilya University Indore India

deepak.abhyankar@yahoo.co.in1
maya_ingle@rediffmail.com2

Abstract: One of the most sophisticated sorting algorithm in sorting literature is Quicksort. Though Quicksort has several striking aspects, design of

partition function is the central aspect of the Quicksort algorithm. Partitioning is a meticulously researched area in which we find Hoare Partition and

Lomuto Partition as two prominent partition algorithms in the literature. Despite the fact that much effort has been targeted on research into

partitioning, it seems that partitioning is still inadequately understood and amenable to a right blend of optimizations. Superior partitioning

algorithms can be designed using a perfect blend of performance improving measures and a touch of elegance. This paper postulates two novel

partition algorithms which are better than the existing ones. Proposed algorithm3 apply some effective optimizations and because of this instruction

count gets reduced. Reduced instruction count helps the function in gaining spectacular performance. Presented algorithm4 is an elegant algorithm

which is compact and intenselycompetitive from performance point of view.

Keyword: Algorithm, Quicksort, Partition, Lomuto

INTRODUCTION

Quicksort is known to be one of the most efficient sorting

algorithms[1]. Though there are several imperative issues in

Quicksort but the design of partition function is a cornerstone

in the study of quicksort because overall performance

depends largely on the performance of a partitioning

algorithm. There are several partitioning algorithms in the

literature, but almost all Quicksort implementations call either

Hoare algorithm or Lomuto algorithm for partitioning

[2],[3],[5]. Hoare algorithm seems more economical of time

than the Lomuto algorithm because it usually needs lesser

number of exchanges. Though basic idea of Hoare algorithm

is simple but details are intricate and practical experience

suggests that to write a correct implementation of Hoare

algorithm is an arduous task. On the other hand Lomuto

algorithm ends up in a pellucid program and is a concept that

can be implemented with relative ease[4]. Both Lomuto and

Hoare algorithm have linear time complexity in worst case

means both are asymptotically optimal and differ in

performance only by a constant factor. Though these

algorithms are asymptotically optimal, development of these

partitioning algorithms has not fizzled and these partitioning

algorithms can be significantly improved using a perfect blend

of performance improving optimizations and a touch of style.

This paper argues in favor of two intriguing partition

algorithms that are sharpened than the existing ones. Section 2

of the paper focuses on the formal and informal description of

Hoare and Lomuto algorithms. Following it is section 3,

which elucidates two new partition algorithms inspired from

Hoare and Lomuto algorithms respectively. The Result

statistics of existing and proposed partition algorithms on

some crucially important parameters is analyzed in section 4.

Finally, we conclude the paper in section 4. Although the

psuedocode illustration of an algorithm and its analysis is

stimulating and challenging to the academic mathematician's

brain, it seems downright dishonesty from an engineering

angle. We have therefore strictly adhered to the rule of

presenting the functions in a C++ language in which they can

actually be executed on a real machine[8].

EXISTING ALGORITHMS

As stated earlier, literature is imbued with partitioning

algorithms, but Hoare and Lomuto Partitioning Algorithms

emerge as outstanding algorithms, so the current section

describes above mentioned algorithms. Section 2.1 and

Section 2.2 are devoted to the informal and formal

descriptions of Hoare Partitioning algorithm and Lomuto

Partitioning algorithm.

Hoare partitioning algorithm

Hoare partitioning algorithm, published by Sir Charles Antony

Richard Hoare in 1962. It is an efficient algorithm to fix the

pivot element in the correct position and to partition around

the pivot element so that elements larger than the pivot will be

fixed on the right side of the pivot and elements lesser than or

equal to pivot will be fixed on the left side of the pivot. In

addition to that partition function returns the correct position

of the pivot. The C++ function below with signature

HoarePartition(int *a, int p, int r), where a, p and r represents

D. Abhyankar et al, Journal of Global Research in Computer Science, 2 (2), February 2011, 17-23

© JGRCS 2010, All Rights Reserved 18

array, first location, and last location respectively, performs

the partitioning operation according to Hoare Partitioning

Algorithm and function swap(int *, int *) is called to

exchange values in two variables[4].

Algorithm 1: {Hoare-Algorithm}

inline void swap(int& x, int& y)

{

int temp = x;

x = y;

y = temp;

}

int HoarePartition(int* a, int p, int r)

{

if(p>=r) return -1; // trivial return for empty array

int x = a[p]; // x stores the pivot element

int i = p;

int j = r+1;

while(1)

{

 do{

 i++;

}while((i<=r)&&(a[i]<x)); // searches the

element larger than

 // pivot from Left portion

 do{

 j--;

 }while(a[j]>x); // searches the element

smaller than pivot

 // from the Right portion

 if(i>j) break;

 swap(a[i],a[j]);

}

swap(a[p],a[j]); // swaps the larger element from the

left with the // smaller

element from the right

return j; // returns the location of the pivot

}

Complexity& Adaptiveness Issues

 Hoare partitioning algorithm like any other partitioning

algorithm is invariably of �(n) time complexity. Hoare

partitioning algorithm is an inplace partitioning algorithm

means it does not entail extra space to partition the array. It is

evident that space complexity is invariably �(n). An adaptive

sorting algorithm can take the advantage of already existing

order in an array. It was observed that the swap count is the

function of the number of inversions that are present among

elements of left partition and elements of right partition in the

array. In other words if array is partially sorted or roughly

sorted Hoare partitioning algorithm will incur lesser number

of exchanges. Unfortunately comparison count is n-1 and do

not depend on the number of inversions [7]. So it is plain that

swap count of Hoare partition is adaptive but comparison

count is not influenced by the already existing order of an

array.

Lomuto Partitioning Algorithm

Lomuto partitioning algorithm is a lucid partitioning

algorithm. Function LomutoPartition(int *a, int p, int r),

where a, p and r represents subarray, first location and last

location of subarray, implements the Lomuto partitioning

algorithm to find the correct location of the pivot element[6].

Algorithm 2 {Lomuto Algorithm}

int LomutoPartition(int *a, int p, int r)

{

 int x=a[r]; // x stores the pivot element

 int i=p-1;

 int j=p; // j is loop control variable

 while(j<=(r-1))

{

 if(a[j]<=x) // a[p] to a[r-1] elements

will be compared with

 // pivot

{

 i++;

 swap(&a[i],&a[j]);

}

j++;

}

swap(&a[i+1],&a[r]);

return i+1; // return the location of the pivot

}

void swap(int *a, int *b)

{

 int temp;

 temp=*a;

*a=*b;

*b=temp;

}

Complexity&Adaptiveness Issues

 Lomuto algorithm like any alternative partitioning algorithm

is invariably of �(n) time complexity. Lomuto partitioning

algorithm is an in situ(inplace) partitioning algorithm means it

does not necessitate extra space to partition the array. It is

apparent that space complexity is always �(n). An adaptive

sorting algorithm can take the advantage of already existing

order in an array. Lomuto algorithm lacks the adaptiveness

outright. It was found that the total number of exchanges(swap

count) depend on the choice of pivot and are not determined

by the number of inversions. Unluckily comparison count is

(n-1) and is not determined by the inversion count.

PROPOSED MODIFIED ALGORITHMS

D. Abhyankar et al, Journal of Global Research in Computer Science, 2 (2), February 2011, 17-23

© JGRCS 2010, All Rights Reserved 19

The existing partitioning algorithms execute accidental index

arithmetic operations, index comparison operations and

swaps. This section presents two new algorithms which strive

to slash overhead operations. Subsection 3.1 focuses on

modified Hoare algorithm which is as efficient as Hoare

Algorithm but plucks out redundant instructions from Hoare

Algorithm. Section 3.2 reports an algorithm , more elegant

than Lomuto algorithm and does cut down the superfluous

index manipulation operations executed by original Lomuto

Algorithm.

Modified-Hoare Algorithm

The modified Hoare algorithm applies sentinels to cover left

as well as right extremes of the array whereas existing Hoare

algorithm exerts sentinel at one extreme only and this absence

of sentinel at other end severely undercuts the performance of

original algorithm. Ingenious use of sentinels reduce the index

manipulation operations to optimum level. Swap avoidance is

another advantage of this algorithm because it sloughs off 3

instruction swap code. The C++ function ModifiedHoare(int

*a, int p, int r), where a, p and r are array, starting index and

ending index respectively, articulates new algorithm.

Algorithm 3: {ModifiedHoare-Algorithm}

int ModifiedHoare(int* a, int p, int r)

{

 if(a[p]>a[r])

 swap(&(a[p]),&(a[r])); // Sentinel at both

ends

 int x = a[p]; // x stores the pivot and location p is

vacant now.

 while(1)

 {

 do{

 r--;

 }while(a[r]>x); // search the smaller

element in right

 // portion.

 a[p]=a[r]; // location r is vacant

now.

 do{

 p++;

 }while(a[p]<x); // search the larger element

in left portion.

 if(p<r)

 a[r]=a[p]; // location p is vacant

now.

 else{

 if(a[r+1]<=x)

 r++;

 a[r]=x;

 return r; // return the location of

the pivot

 }

 }

}

Complexity and Adaptiveness Issues

Modified Hoare algorithm like any other alternative

partitioning algorithm is invariably of �(n) time complexity.

Modified Hoare partitioning algorithm is an in situ

partitioning algorithm means it does not occupy extra space to

partition the array. It is easy to observe that space complexity

is invariably �(n). An adaptive sorting algorithm can take the

advantage of already existing order in an array. Like Hoare

algorithm comparison count of modified Hoare is not affected

by existing order in the array but swap count solely depends

on the existing order in the input. On the partially ordered

input algorithm will incur lesser number of exchanges.

Modified Lomuto Algorithm

This section illustrates modified Lomuto algorithm which is

more refined than Lomuto Algorithm. Lomuto algorithm is

terse and elegant, however the administrative overhead for the

index manipulation and swaps is relatively high. It would

seem particularly desirable to slash the administrative

overhead operations. This, however, can easily be remedied

by Modified Lomuto algorithm that casts aside superfluous

index manipulation and swap operations. Modified Lomuto

algorithm exhibits that elusive but essential ingredient known

as style and touch of elegance. This partitioning algorithm is

now formulated in the form of a c++ function. The C++

function ModifiedLomuto(int *a, int p, int r), where a, p and r

represent subarray, first location and last location

respectively, asserts the new partitioning algorithm.

Algorithm 4: {ModifiedLomuto-Algorithm}

int ModifiedLomuto(int* a, int p, int r)

{

 int x = a[p]; // x stores the pivot element

 int i = p; // location i is vacant

 int j = r;

 while(1)

 {

 while(a[j]>x)

 j--;

 if(j<=i)

 break; // terminates the outer loop

 a[i]=a[j];

 a[j]=a[i+1];

 i++;

 }

 a[i]=x;

 return i; // returns the location of the pivot

}

Complexity and Adaptiveness Issues

 Modified Lomuto algorithm like any alternative partitioning

algorithm is invariably of �(n) time complexity in every case.

Modified Lomuto partitioning algorithm is an inplace

partitioning algorithm means it does not occupy extra space to

partition the array. It is effortless to detect that space

D. Abhyankar et al, Journal of Global Research in Computer Science, 2 (2), February 2011, 17-23

© JGRCS 2010, All Rights Reserved 20

complexity is �(n) without exception. An adaptive sorting

algorithm can take the benefit of already existing order in an

array. It was noticed that like Lomuto algorithm Modified

Lomuto algorithm flatly lacks the adaptiveness.

RESULTS AND DISCUSSION

This section is devoted to the comparative study of results of

existing and proposed algorithms on some important

parameters. on the one hand Modified Hoare algorithm applies

sentinel values at both array extremes to control the loops and

thus cuts down the number of index comparisons and on the

other hand original Hoare algorithm applies sentinel at one

extreme only and suffers a fairly high index manipulation

overhead. Table 1 contrasts Hoare Algorithm (Algorithm 1)

with Modified Hoare Algorithm (Algorithm 3) on the basis of

index comparisons for different input sizes.

Table 1 (On Index Comparisons)

 Algorithm 1 Algorithm 3

N Best and Worst case Best & Worst case

100 103 1

200 203 1

1000 1003 1

1200 1203 1

1400 1403 1

2000 2003 1

Modified Hoare Algorithm (Algorithm 3) drastically curtails

the number of instructions required to swap two values. Table

2 below contrasts Hoare Algorithm with Modified Hoare

Algorithm on the basis of number of instructions executed for

exchanging two values.

Table 2 (On swap operations)

 No. of operations for interchanging

values.

N Algorithm 1 Algorithm 3

100 150 100

200 300 200

1000 1500 1000

1200 1800 1200

1400 2100 1400

2000 3000 2000

Table 3 contrasts the Lomuto algorithm(Algorithm 2) with

modified Lomuto algorithm(Algorithm 4) on frequency of

index arithmetic operations. It was perceived that modified

Lomuto algorithm is more economical of time than Lomuto

algorithm in terms of index manipulation and other operations.

Table 3 (On Index Arithmetic operations)

 Algorithm 2 Algorithm4

N Best

case

Avera

ge

Wors

t

Always

100 103 150 202 99

200 203 300 402 199

1000 1003 1500 2002 999

1200 1203 1800 2402 1199

1400 1403 2100 2802 1399

2000 2003 3000 4002 1999

It can be discerned from the comparisons made above that the

proposed algorithms perform lesser administrative overhead

operations than, required by existing partitioning algorithms.

The graphs below show the results obtained by comparing

existing partitioning algorithms with proposed partitioning

algorithms. Modified Hoare Algorithm employs sentinel

values to control loop iterations, which drastically curbs the

number of index comparisons. The index comparisons are thus

minimized in modified Hoare Algorithm.

� � � �

� � � �

Figure. 4 Shows number of index comparisons along y-axis and input size

along x-axis.

Hoare algorithm executes a three instruction swap operations

to interchange two values and modified Hoare Algorithm

competently manages the same in two instructions. Modified

Hoare Algorithm thus needs lesser number of instructions to

interchange. The number of instructions modified Hoare

Algorithm requires to swap is just 2/3rd of instructions

executed by Hoare Algorithm. The graph displays the results.

D. Abhyankar et al, Journal of Global Research in Computer Science, 2 (2), February 2011, 17-23

© JGRCS 2010, All Rights Reserved 21

� � � �

� � � �

� � � �

Figure.5Shows number of swaps

Modified Lomuto Algorithm substantially reduces the number

of index manipulation operations, on average compared to

Lomuto Algorithm. The difference is though negligible in best

case of Lomuto Algorithm but is significant in average and

worst case of Lomuto Algorithm. Graphs below present

average & worst cases.

� � � �

� � � �

� � � �

(a) average case

� � � �

� � � �

� � � �

(b) worst case

Figure.6 (a & b) shows number of index arithmetic operations

Lomuto partitioning algorithm and Hoare partitioning

algorithm have ample scope of improvement. Presence of

excessive index manipulation operations and swap operations

impede the algorithm's speed. The algorithms presented in

this paper address these problems and effectively reduce the

instruction count to gain the speed. Suggested algorithms

effectively lower the index manipulation overhead to bare

minimum. Modified Lomuto algorithm seems to be more

elegant than the Lomuto algorithm because of its compact

code. Above tables and graphs are helpful to have a rough

comparison , however these graphs and tables do not take into

account the efforts expended on cache miss, page faults and

branch mispredictions. For practical purposes, however it is

better to have time profiling of functions to shed light on

algorithms under study.

This research adapted a pragmatic approach to conduct a

comparative study of existing algorithms and presented

algorithms. Netbeans 6.7 was installed for profiling and was

highly instrumental in preparing reliable statistics. We have

generated random input for our empirical study. Table 4

contrasts the time profiling of Hoare algorithm with proposed

algorithm. Figure 4.4 contrasts the same graphically. Table 5

compares the time profiling of Lomuto algorithm with

proposed algorithm. Figure 4.5 compares the same

graphically. Empirical comparative study revealed that

proposed algorithms present drastic improvement over

conventional partitioning algorithms. It is important to note

that cache miss, page faults and branch miss predictions affect

the time spent by a program; hence no algorithm is emerging

as a clear winner in terms of time taken.

To conclude this set of partitioning methods, we shall try to

contrast their effectiveness. Performance of Hoare partition is

not bad, but the performance improvement of Modified Hoare

over Hoare partition is spectacular. Unfortunately both Hoare

as well as Modified Hoare algorithms show a definite dislike

for lucidity and elegance. They are not the most compact

either, still Modified Hoare is more compact than Hoare

algorithm. If we choose an algorithms from a practical angle

then modified Hoare is an ultimate partitioning algorithm and

Lomuto algorithm is definitely the worst among all compared.

Still from an aesthetic point of view Lomuto algorithm is

lucid, elegant and terse but the improvement of Modified

Lomuto algorithm over Lomuto algorithm is tangible. Even

from performance point of view Modified Lomuto algorithm

is better than the Lomuto algorithm.

D. Abhyankar et al, Journal of Global Research in Computer Science, 2 (2), February 2011, 17-23

© JGRCS 2010, All Rights Reserved 22

Table 4 (Time profiling)

 Hoare(Time in ms) Proposed(Time in ms)

N Random Case Random Case

10000 12.7 .724

20000 5.31 1.93

30000 15.3 2.30

40000 19.7 5.60

50000 11.2 19.9

60000 23.2 2.68

70000 15.4 2.4

80000 3.25 5.58

90000 15.7 14.3

100000 38.2 10.8

Table 5(Time profiling)

 Lomuto(Time in ms) Proposed(Time in ms)

N Random Case Random Case

10000 2.1 .656

20000 6.5 3.59

30000 5.45 4.61

40000 4.36 2.80

50000 19.6 10.7

60000 18.9 7.32

70000 26 2.17

80000 19.2 2.49

90000 22.2 11.0

100000 25.4 3.18

Figure.7(Time profiling)

D. Abhyankar et al, Journal of Global Research in Computer Science, 2 (2), February 2011, 17-23

© JGRCS 2010, All Rights Reserved 23

Figure.8 (Time profiling)

REFERENCES

[1] D. E. Knuth, The Art of Computer Programming, Vol. 3,

Pearson Education, 1998.

[2] C. A. R. Hoare, "Quicksort," Computer Journal5(1) ,

1962, pp. 10-15.

[3] S. Baase and A. Gelder, Computer Algorithms:Introduction

to Design and Analysis, Addison-Wesley, 2000.

[4] J. L. Bentley, "Programming Pearls: how to sort,"

Communications of the ACM, Vol. Issue 4, 1986, pp. 287-

ff.

[5] R. Sedgewick, "Implementing quicksort Programs,"

Communications of the ACM, Vol. 21, Issue10, 1978, pp.

847-857.

[6]T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein,

Introduction to Algorithms, Second Edition. MIT Press

and McGraw-Hill, 2001.

[7] G. S. Brodal, R. Fagerberg and G. Moruz, "On the

adaptiveness of Quicksort," Journal of Experimental

AlgorithmsACM, Vol. 12, Article 3.2, 2008.

[8] N. Wirth, Algorithms and Data Structures, © N. Wirth

1985 (Oberon version: August 2004)

