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ABSTRACT

This paper studies asymptotic properties of the minimum distance
Hellinger estimates for a stationary multivariate linear gaussien long range

dependent process of the form X, = Z::OAU(Q)Zt_u ‘where (Z,),0, is a sequence
of strictly stationary d-dimensional associated random vectors with E(Z)

= 0 and E(HZtH2)<oo and {A} is a sequence of coefficient matrices with
> JAu|<o and 3" A #0,x,.By means of the properties of the kernel

density estimate, the minimum distance Hellinger of this class are shown to
be consistent, asymptotically normal and robust.

INTRODUCTION

bead-variate linear process independent of the form:

(1)

Defined on a probability space (2, J (F), p), where {Z} is asequence of stationary d-variate associated random vectors with
E(Z) =0, E(HZtHQ) <+o0 and positive definite covariance matrix @:dxd  Throughout this paper we shall assume that

2ol <=

“ A0, x,

u=0" U

2)

3)

whereforanyd d,d>2, matrixA=(a,(6)) whose components depend on the parameter 6, such as HAUHZLijlaU;Zf:OHain <o
and 0, ,denotes the dxd zero matrix. Here 800 with ®CIR , with. Let

T=(XA)r (24,

(4)

where the prime denotes transpose, and the matrix r =(0kj) with

o= E(Z,Z,)+ ). (E(Z,Z;)+E(Z,Z,))

Further, let Sn=3"X,n>1) (S, =0).

t=1

(5)

{X.},s2 IS @assumed to be gaussian and have long rang dependent process. Fakhre-Zakeri and Lee proved a central theorem
for multivariate linear processes generated by independent multivariate random vectors and Fakhre-Zakeri and Lee also derived
a functional central limit theorem for multivariate linear processes generated by multivariate random vectors with martingale
difference sequence. Tae-Sung Kim, Mi-HwaKo and Sung-Mo Chung ™ prove a central limit theorem for d-variate associated
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random vectors. The problem is how to estimate 6 in order to investigate the fitting of the model to the data? An estimation of g
would have two essential properties: it would be efficient and its distribution would not be greatly pertubated.

{X} is a multivariate Gaussian process in dependent with density £, (_) . We estimate the parameters in the general multivariate
linear processes in (1).

In this paper is to prove a general estimation of the parameter vector 6 by the minimum Hellinger distance Method
(MHD). The only existing examples of MHD estimates are related to i.i.d. sequences of random variables’s 4., For long memory
univariate linear processes see Bitty and Hili .. The long memory concept appeared since 1950 from the works of Hurst in
hydraulics. The process {X.}, is said to be a long memory process if in (1), A is a parameter of long memory, and 1 /2< 4, <1 for
j=1;...;dandi=1;...;d.

The paper developers in section 2, some assumptions and lemmas, essentially based on the work of Tae-Sung Kim, Mi-Hwa
Ko and Sung-Mo Chung ™! and the work of Theophilos Cacoullos ®. Our main results arein section 3, based on work of Bitty and
Hili ®'which show consistency and the asymptotic properties of the MHD estimators of the parameter 6. We conclude with some
examples,

ASSUMPTIONS AND LEMMAS

Parzen ") gave the asymptotic properties of a class of estimates f (x) an univariate density function f(x) on the basis of
random sample X,,....X_ from f(x). Motivated as in Parzen, we consider estimates f (x) ofthe density function f(x) of the following
form:

0= 52 o) ©)

1 & x—X,
=—— 9SK L, 7
e 2 [ h, J "

where F _(x) denotes the empirical distribution function based on the sample of n independent observations X,,..., X _on the
random d-dimensional vector X with chosen to satisfy suitable conditions and {hn} is a sequence of positive constants which in
the sequel will always satisfyh, — 0, as n — o« .We suppose K(y) is a bore scalar function on E such that

SUP,, [K ()] < o0 (8)
[[K(y)|ay <o 9)
y"K(y) =0, asly] > (10)

where |y| denotes the length of the vector.

And
[K(y)dy:l (11)
K(y)=K(-y) forally, (12)

also K(y) is absolutely integrable (hence f(x) is uniformly continuous).

[yK(y)dy=0 (13)

and J.K3(y)dy<oo(p+4)71<a<p’1and3£l£5 (14)

See Theopilos Cacoullos ©'and Bitty, Hili !

Notations and Assumptions: Let F = {f(.,é))}m be a family of functions where0 is a compact parameter set of R? such that
forall 0c®, f(.,6):R? > R is a positive integral function. Assume that f(.,0) satisfies the following assumptions.

(A1): Forall 6, e®,0 # uis a continuous differentiable function at 6¢® .

1
(A2): (i) f(x,g)andaifi(x,e) have a zero Lebesgue measure and f (.,8)is bounded on R .
X

(ii) For 0,u00,0 # 4 implies that {x /f(x,0)#f(x u)} is a set of positive Lebesgue mesure, for all xoR*

(A3): K the kernel function such that
[ K(u)du=1,2 =] K*(u)du <.
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(A4): The bandwidths {b } satisfy natural conditions, b, — 0,n'b? — o for :=1whenn —

(A5): There exists a constant B>0 such thatinf, inf .f, >

Let F denote the set of densities with respect to the Lebesgue measure on ¢ . Define the functional T:G — ® in the following:

Let goG . Denote by B(g) the set B(g)= {ae(a H, (f,,8) =min, , oM, (f, g)} where H,is the Hellinger distance.

If B(g) is reduced to a unique element, then define T(g) as the value of this element. Elsewhere, we choose an arbitrary but
unique element of these minimums and call it T(g).

Lemma 1: Let (Zt)teZ pe a strictly stationary associated sequence of d-dimensional random vectors with E(Zt) = 0, E(Zt) <+
and positive definite covariance matrix r as (5). Let (X)) be a d-variate linear process defined as in (1). Assume that

E(HZJ‘H ) Zt 22; 1COV 1 _0-2 <0, (15)

then, the linear process(X) fulfills the limit central theorem, that is, Sn =n"/?S, - N(0,T), (16)

Where —° denotes the convergence in distribution and N (0, T) indicates an normal distribution with mean zero vector and
covariance matrix T defined in (4).

For the proof of lemma 1, see theorem 1.1 of Tae-Sung Kim, Mi-Hwa Ko and Sung-Mo Chung !

Lemma 2: To remark 3.2 and theorem 3.5 of Tae-Sung Kim, Mi-Hwa Ko and Sung-Mo Chung ¥, we have

(nh*)"(£,(x) = F(x)) > N(0,F(x) [ (v)aly). (17)
For the proof of lemma 2, see Tae-Sung Kim, Mi-Hwa Ko and Sung-Mo Chung 1!

Lemma 3: Assume that (A) holds. If f, is continuous on R and if for almost all x, h is continuous on @, then

(i) for all ge,F B(g)+@.

(i) If B(g) is reduced to an unique element, then t is continuous on g Hellinger topology.

(iiiy T(f,)=6 Uniquely on @

Proof: See Lemma 3.1 in Bitty and Hili ®

Lemma 4: Assume that &, =1"*(.,0) satisfies assumptions (A,),-(A,). Then, for all sequence of density {f,},., converges to
f, in the Hellinger topology.

T(F)=T(f,)+ ] .p)(x [fl/z — 12 (x )de+anJ.RdgT(fg)(x)[ﬁl/2(x)—fﬁl/z(x)]dx,

where,

)= [ 81 ()7 (00| 0
With a, a(q>< q) - matrix whose components tends to zeron — o
Proof: See Theorem 2 in Beran

Lemma 5: Under assumptions (A,), if the bandwidth b_ is an theorems 1 and 2, if f{.,0) is continuous with a compact support.
And if the density f(.,6) of the observations satisfies assumptions(A,) -(A,). Then fn(.) converges to f{.,0) in the Hellinger topology.

Proof of lemma 8

Under assumption (A,), (A,) and (A,) and lemma 2, we have

(j.]R"

Then? —f, as. n— o in Hellinger topology

ESTIMATION OF THE PARAMETER

This method has been introduced by Beran  for independent samples, developed by Bitty and Hili ® for linear univariate
processes dependent in long memory. The present paper suppose the process independent multivariate with associated random
vectors under same condition of Bittyand Hili ¥ in long memory. The minimum Hellinger distance estimate of the parameter vector
is obtained via a nonparametric estimate of the density of the process (X). We define én as the value of 8¢® which minimizes the
Hellinger distance H,(f,,f(.,0)

n

f1/2(x)—f1/2‘2dx)1/2—>0, a.s. n— o,

i.e: H2(fn,f(.,én)):mianQ(fn,f(.,H)),
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where fn is the nonparametric estimate of f{.,6) and

Hz(fn(.),f(.,e)):{IRd
There exist many methods of nonparametric estimation in the literature. See for instance Rosenblatt ® and therein. For
computational reasons, we consider the kernel density estimate which is defined in section 2. Before analyzing the optimal

properties of §, we need some assumptions.
i.e: Hz(fn,f(.,én)):min96®H2(fn,f(.,t9)),

where f. is the nonparametric estimate of f{(.,6) and

n

772 (x) ~ 172 (x,0)[ o)™

n

Ha(R O (0) =1,

Asymptotic properties

Theorem 1 (Almost Sure Consistency): Assume that (A, )-(A,) hold. Then, én almost surely converges to0.

£172 (x)— 2 (x, 9)\ dx)*/?

For the proof, see section 3.
Let denote by J, as: J =(nb,)"”
Let us denote by R,(.)=1"?(..0), R,(.)=of"?(.,0) /86 and p(.,0)the following function.
. . -1
0)=[ J,.R, ()R (x)ax] R, (x),
Where R,(x)is a quantity which exists, and t denotes the transpose.

Condition 1:
We have the (g x q) matrix sequence v, in lemma 4 and the sequence J are such thatJ v _tend to zero as n — oo.
Theorem 2 (Asymptotic distribution): Assume that (A1)-(A6) and condition 1 hold. If
J' R0 R (x dx is a nonsingular (qq) -matrix,
(i) p(,0) admits a compact support then, we have Jn[én —9} - N(O;jRY(x,H)Zz(x)Y‘ (x,e)dx)
For the proof, see section 3.
Appendices
Proof of theorem 1
o (10 =T, [ (-1 (x0) dx}m 50 as. whenn -0,
From lemma 3,
(£ (10 =], [ (-1 (x0) dx}m 50 as. whenn -0,

n

As T(fn(.)) =0 andT(f(.,H)) =6 uniquely, the remainder of proof follows from the continuity of the functional T(.) in lemma 1.

Proof of theorem 2
From lemma 2 and the proof of theorem 2 of Bitty and Hili ¥, we have

J [én - (9} = JnIRp(x,H)[fnl/Q (x)-r2 (x,@)}dx
+ann_[RR(x,H)[fni/Q(x)—fm(x,&)de,
where an a (dxd)-matrix whose components tend to zero in probability when n — o .
Under condition 1, we have
=v, ) [ R(6O)[ 172 (x) =2 (x,0) |dx >, 0.
So the limiting distribution of J,[ 4, -6 | depends on the limiting distribution of J,L, (), With
L,(0)= [ p(xO)[ £7*(x)~ 2 (x,0) ax.
For a>0,b >0, we have the algebraic identity
/2 _ b1/2 -2t b—1/2 (a —b) —[2b1/2(61/2 + bl/z)zJ_l (a _ b)z.
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For a=f,(x)and b = f(x,0), we have

=20, [ R, (x)F 2 (x,0)IF, (x) - f(x,@)]dx—21annURRH(x)f1/2 (ﬁi(zx;:;i?j))l)jzf de
=D,(0)+E,(0)
With
D,(0)=2"v,J,[ R, (x)f 2(x,0)[ ,(x)~(x0) ax
And

En(9)=—21ann[IRRy(x)fwz (7, (x) =1 (%.0) dXJ

(B2 (x) =Ry ()Y
From assumption (A6), then inf,f(x,0)> B >0,
[7,(x)~f(x.0)] o

For a>0,b>0, (a—b)’ s2(a2+b2), then

\En(e)\sf B I,

‘E (6 )‘<,3 3/2ann'f ‘R X [ (x,0 J dx+ B>, JI ‘R [E(fn(x))—f(xﬂ)}zdx
=E, (0)+ 2(0)

With

E,.(0)= ﬂ’mannIIR ‘RH (x)

[7,(x)~(x.0)] ax

And
E(0)= 5,0, ][Ry (x)[E(,(x)~7(x.0)] x
Under assumptions (A1)—(A2) we apply Taylor Lagrange in order 2 and assumption (A4) we have:
E(fn(x))—f (x.0) =j [f(x-b,2,0)-f(x,0)]K(z)dz
—_[ —b,zf'(x,0) +2" bfz2f“(x,€))K(z)dz
=2"'p’f "(X,H)IR ’K(z)dz

So

sup, E(fn(x))—f(xﬂ)‘ <27'b’sup f“(x,a)URz2K(z)dz
:O(bf) when n—

So

E,(6)—>0 whenn— o

Furthermore, we have fn(X)—E(fn(X)): - Y (F,(¥)=F(y)

where F (.) and F(.) are respectively the empirical distribution function and distribution function of the process.
By integration by part, we have
fn(x)—E( )——b I K'(z)(F,(x-b,z)~F(x—-b,z))dz
;(x)_E(fn(x))\ =b;"sup,|F, (x)=F(x)| [, [k
From Ho and Hsing 19 (theorem 2.1 and remark 2.2) and assumptions (A2) and (A4), we have
2 (X)=F (x)| > [@]sup, ((x))

where @ is a standard Gaussian random variable and !D denotes convergence in distribution.
So

sup,

z)‘dz

itz (n)supx
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b *sup,

f,(x)-E(7,(x)

JRK'Z

1
( )“”SW

) n““zan’l(n)Fn(x)—F(x)‘ XIR

)‘ dz

K'(z)‘ dz

~ (n1+1/2b L—l(

where = . For all § >0,

Prob((n**/2b, L% (n)) "

x)‘ o> &) < (n’“”/zan’1 (n))_2 (sup, ‘f(x)‘)2 x Var(\d)\)x%

2

The convergence of (n““zan’l(n))f2 (sup, |f(x))” x Var(®]) depends on the convergence of (n***/?p,L"(n))".
So under assumptions b, - 0,n — «,nb, - cwandn'b, - o for 3<:<5, we have

(n**2, " (n))f2 =[n**p, }72 *(n)
= o([n"”/zbn ]72)

—0 when n— .
We have (sup, |f(x)|)* < wandVar (|®]) <, SO
(n““zan’l(n))flsupX |(x)||0] -, 0 whenn — oc.
So E,, »>"0 when n— o,

Then E, "0 when n— .

=27, J, [ Ry (x0)F 2 (x0)[ ,(x) ~E(F,(x)) |ax +27v, 0, | R, (x.0)F ™ (x,0)(E(f, (x)) ~ F(x,0)lox
=Dn1(9)+Dn2(9)
With
D1 (0)=27v,J, [ Ry(x0)F ™ (x.0)] F,(x)~E(F, (x)) Jex
and

D1 (6)=27v,J,[ Ry (x0)F 2 (x.0)] E(f,(x)) = F(x.6) |ox.

Under assumptions (A1) — (A2) we apply Taylor-Lagrange formula in D,,(6)— 0 when n— . order 2 and assumption (A4),
we have
Furthermore, from propositions 1, 2 and 3, we have

Part (a)

I, (x)~E(f, (x

or
5[E(0)-E(f(x)]= u(x),

Where Z x)and U(x) take values according to the different points of the proof of lemma 3:

N> Mo X ()

0)[ Kdu in(i)
. [ (x0) in (i)
) 9 (x,0)k, .| in (it
a’(x.c) in(v)

and
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(-1) z,,f"(x,0) in(iv)

1/2
AT C(Ar—j K, ) -
Z[C’(“ (1,1))} ) C’*f*ij(/l,i) 2ol (0) )

j=0

U(x)=

Here Z,, is the Multiple Wiener-Itd Integral defined in the relation (9) of section 1.1 and o?(x,c) is defined in the first point
of proposition 3. Denote by Y, (x,0) =R, (x)f*/*(x,0)

V. (x,0)1,[£.(x)-E(£ (%)) | >° N(0.Y. (x0) X7 (x)¥: (x,0))

or

Y,(x,0), £,(0)=E(7,(x)) | = Y. (x0)u(x)¥, (x.0).

We deduce that

[Y.(x0)4,[ £.(0)-E(,(x)) |ax >° N(o.] ¥a (x0) X (x)¥; (x,6))ax.
or

[V (x0)4,[,()=E(7,(x)) ox = [ Y. (x O)U(x)¥{ (x.6)ax

Were call that v, —”0 when n— «, then D,; =0 whenn — « . So we conclude that D — 0 whenn —

Part (b)
_o-1 1722 Lot X X -1/2 (fn(X)—f(X,H))z X
L, (0)=274,[_p(x0)f(x.0) [ F,(x)~F(x0)]ax+27J,| [ p(x0)f(x6) (ﬁlﬂ(x)_f(x,e)l”fd]
=D,(0)+E,(0)
with
=275,[ p( 0) [ £,(x) = F(x,0) |x
and

E,(0)=2"1,| [_p(x0)(x.0)"" f(fn(X)—f(x,e))? de

From part (a), the proof of E,, (9) is the same as the proof of E,(6). Were place R,(x,0)by(x,0).Then,E,(6) >0, when n— .

Hence it suffices to prove that the limiting distribution of J, [@ - 9} is the same as the limiting distribution of D,(#) .Since

£ = F(x0) = (£, ~E(£,(x)))+ (E(%, () - £(x.0)),

then

=27, [ p(xO)F 2 (x,0)| 7,(x)=E(f,(x)) Jox+ 270, [_p(x.0)F*/2(x,0) E(F,(x))~F(x.0) |ax=6,(6) + G, (0)
with

=270, [ p(x0)F**(x.0)|F,(x)=E(f,(x)) Jox
and

=27 JJ x,60)f % (x, 9)[ (f (x))—f(x,&)}dx
From the proof of lemma 3 (part (b)), we have:
J, (E(fn (x)) - f(x,@)) — 0, when n — o,
then

G,(6)—>0, when n—

From propositions 1, 2 and 3, we have:
5LIE(0-E(%,(0) ][> N(0: X7 (%)
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or

LA ()=E(f () | = u(x
Denote by Y (x,0) = p(x,0
Y(x0)4,[ £, (x)-E(£,(x))] > N(0Y (x0) X" ()Y (x0))

or

=
P

)
)72 (x,0)

Y(x0)J,[,(x)=E(f,(x)]= Y (x0)U(x)Y* (x,0)

We deduce that

[ (x0)1,[£,()=E(f,(x)) Jax > N(0.] Y (x0) X" (x)Y" (x.6))ax.
or

[LY(x0) [ £,()=E(F,(x)) Jox = [ Y (x0)u(x)¥*(x.0)ox
So,

G,(0) > N(0:[ Y (x0) X (x)Y" (x.6)x.)

or

G,(0)=[,Y(x0)U(x)Y" (x,6)dx.

Then,

D,(0) > N(0: Y (x6) X" (x)Y*(x.0)ax.)

or

D,(0)],Y (x0)U(x)Y" (x,6)dx.

CONCLUSION

We conclude that we have either an asymptotic normal distribution or an asymptotic process towards the Multiple Wiener-

[t Integral.

© 0 N O ok~ wDd

=
o
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