Research & Reviews: Journal of Statistics and Mathematical Sciences

Estimation of Long Memory Linear Processes

Ichaou Mounirou*

Faculty of Management and Economics Sciences, Université de Parakou, Benin

Letter

Received date: 10/05/2016 Accepted date: 24/05/2016 Published date: 28/05/2016

*For Correspondence

Ichaou Mounirou, Faculty of Management and Economics Sciences, Université de Parakou, Benin

E-mail: ichaou_bassir@yahoo.fr

Keywords: Multivariate Processes, Kernel Density, Hellinger Distance, Linear Process, Parametric Estimation, Long Memory, Multivariate Processes

ABSTRACT

This paper studies asymptotic properties of the minimum distance Hellinger estimates for a stationary multivariate linear gaussien long range dependent process of the form $X_t = \sum_{u=0}^\infty A_u(\theta) Z_{t-u}$, where $(Z_t)_t \dot{\mathbf{O}}_{\mathbb{Z}}$ is a sequence of strictly stationary d-dimensional associated random vectors with $\mathbf{E}(\mathbf{Z}_t) = \mathbf{0}$ and $\mathbf{E}(\|\mathbf{Z}t\|^2) < \infty$ and $\{\mathbf{A}_u\}$ is a sequence of coefficient matrices with $\sum_{u=0}^\infty \|\mathbf{A}u\| < \infty$ and $\sum_{u=0}^\infty A_u \neq \mathbf{0}_d \times_d$. By means of the properties of the kernel density estimate, the minimum distance Hellinger of this class are shown to be consistent, asymptotically normal and robust.

INTRODUCTION

Let $(X_t)_{t \in \mathbb{Z}}$ bead-variate linear process independent of the form:

$$X_{t} = \sum_{u=0}^{\infty} A_{u}(\theta) Z_{t-u} \tag{1}$$

Defined on a probability space $(\Omega, \mathfrak{T}(F), p)$, where $\{Z_t\}$ is a sequence of stationary d-variate associated random vectors with $E(Z_t) = 0$, $E(\|Zt\|^2) < +\infty$ and positive definite covariance matrix $\tilde{a}: d \times d$. Throughout this paper we shall assume that

$$\sum_{u=0}^{\infty} ||Au|| < \infty \tag{2}$$

$$\sum_{n=0}^{\infty} A_n \neq 0_d \times_d \tag{3}$$

where for any d d, d \geq 2, matrix A = $(a_{ij}(\theta))$ whose components depend on the parameter θ , such as $\|Au\|\sum_{i=1}^{d}\sum_{j=1}^{d}a_{ij};\sum_{u=0}^{\infty}\|ai\|^{2}<\infty$ and $O_{d\times d}$ denotes the d×d zero matrix. Here $\theta\dot{\mathbf{o}}\Theta$ with Θ C $\mathbb R$, with. Let

$$T = \left(\sum_{j=0}^{\infty} A_j\right) r \left(\sum_{j=0}^{\infty} A_j\right), \tag{4}$$

where the prime denotes transpose, and the matrix $\Gamma = (\sigma_{ki})$ with

$$\sigma_{kj} = E(Z_{1k}Z_{1j}) + \sum_{t=2}^{\infty} (E(Z_{1k}Z_{tj}) + E(Z_{1k}Z_{tj}))$$
(5)

Further, let
$$Sn = \sum_{t=1}^{n} X_{t}, n \ge 1$$
 ($S_{0} = 0$).

 $\{X_t\}_{toZ}$ is assumed to be gaussian and have long rang dependent process. Fakhre-Zakeri and Lee proved a central theorem for multivariate linear processes generated by independent multivariate random vectors and Fakhre-Zakeri and Lee also derived a functional central limit theorem for multivariate linear processes generated by multivariate random vectors with martingale difference sequence. Tae-Sung Kim, Mi-HwaKo and Sung-Mo Chung [1] prove a central limit theorem for d-variate associated

random vectors. The problem is how to estimate θ in order to investigate the fitting of the model to the data? An estimation of θ would have two essential properties: it would be efficient and its distribution would not be greatly pertubated.

 $\{X_i\}$ is a multivariate Gaussian process in dependent with density $f_{\theta}(.)$. We estimate the parameters in the general multivariate linear processes in (1).

In this paper is to prove a general estimation of the parameter vector θ by the minimum Hellinger distance Method (MHD). The only existing examples of MHD estimates are related to i.i.d. sequences of random variables's [2-4]. For long memory univariate linear processes see Bitty and Hili [5]. The long memory concept appeared since 1950 from the works of Hurst in hydraulics. The process $\{X_t\}_{t \, \delta \mathbb{Z}}$ is said to be a long memory process if in (1), λ is a parameter of long memory, and $1/2 < \lambda_{ij} < 1$ for $j = 1; \dots; d$ and $i = 1; \dots; d$.

The paper developers in section 2, some assumptions and lemmas, essentially based on the work of Tae-Sung Kim, Mi-Hwa Ko and Sung-Mo Chung ^[1] and the work of Theophilos Cacoullos ^[6]. Our main results arein section 3, based on work of Bitty and Hili ^[5] which show consistency and the asymptotic properties of the MHD estimators of the parameter θ . We conclude with some examples,

ASSUMPTIONS AND LEMMAS

Parzen [7] gave the asymptotic properties of a class of estimates $f_n(x)$ an univariate density function f(x) on the basis of random sample $X_1,...,X_n$ from f(x). Motivated as in Parzen, we consider estimates $f_n(x)$ of the density function f(x) of the following form:

$$f_n(x) = \int \frac{1}{h_n^d} K\left(\frac{x - y}{h_n}\right) dF_n(y) \tag{6}$$

$$=\frac{1}{nh_n^d}\sum_{j=1}^n K\left(\frac{x-X_j}{h_n}\right),\tag{7}$$

where $F_n(x)$ denotes the empirical distribution function based on the sample of n independent observations $X_1, ..., X_n$ on the random d-dimensional vector X with chosen to satisfy suitable conditions and $\{h_n\}$ is a sequence of positive constants which in the sequel will always satisfy $h_n \to 0$, as $h \to \infty$. We suppose K(y) is a bore scalar function on E_d such that

$$\sup_{y \in E_x} |K(y)| < \infty \tag{8}$$

$$\int |K(y)| dy < \infty \tag{9}$$

$$|y|^{d} K(y) \to 0, \ as|y| \to \infty$$
 (10)

where |y| denotes the length of the vector.

And

$$\int K(y) dy = 1 \tag{11}$$

$$K(y) = K(-y)$$
 for all y , (12)

also K(y) is absolutely integrable (hence f(x) is uniformly continuous).

$$\int y_i K(y) dy = 0 \tag{13}$$

and
$$\int K^3(y) dy < \infty (p+4)^{-1} < \alpha < p^{-1}$$
 and $3 \le i \le 5$ (14)

See Theopilos Cacoullos [6] and Bitty, Hili [5]

Notations and Assumptions: Let $\mathcal{F} = \{f(.,\theta)\}_{\infty}$ be a family of functions where Θ is a compact parameter set of \mathbb{R}^q such that for all $\theta \in \Theta$, $f(.,\theta) : \mathbb{R}^d \to \mathbb{R}$ is a positive integral function. Assume that $f(.,\theta)$ satisfies the following assumptions.

(A1): For all $\theta, \mu \epsilon \Theta, \theta \neq \mu$ is a continuous differentiable function at $\theta \epsilon \Theta$.

(A2): (i) $f(x,\theta)$ and $\frac{\partial}{\partial x} f^{\frac{1}{2}}(x,\theta)$ have a zero Lebesgue measure and $f(.,\theta)$ is bounded on \mathbb{R}^d .

(ii) For $\theta, \mu \delta \Theta, \theta \neq \mu$ implies that $\{x / f(x, \theta) \neq f(x, \mu)\}$ is a set of positive Lebesgue mesure, for all $x \delta \mathbb{R}^d$

(A3): K the kernel function such that

$$\int_{\mathbb{R}^d} K(u) du = 1, \tau^2 = \int_{\mathbb{R}^d} K^2(u) du < \infty.$$

(A4): The bandwidths $\{b_n\}$ satisfy natural conditions, $b_n \to 0, n'b_n^d \to \infty$ for $i \ge 1$ when $n \to \infty$

(A5): There exists a constant $\beta>0$ such that $\inf_{\theta\in\Theta}\inf_{\mathbf{x}\in\mathbb{R}^d}f_{\theta}\geq\beta$.

Let F denote the set of densities with respect to the Lebesgue measure on \mathbb{R}^d . Define the functional $T:\mathcal{G}\to\Theta$ in the following:

Let $g \circ G$. Denote by B(g) the set $B(g) = \{\theta \in \Theta : H_2(f_\theta, g) = \min_{\beta \in \Theta} H_2(f_\beta, g)\}$ where H_2 is the Hellinger distance.

If B(g) is reduced to a unique element, then define T(g) as the value of this element. Elsewhere, we choose an arbitrary but unique element of these minimums and call it T(g).

Lemma 1: Let $(Zt)t \in \mathbb{Z}$ be a strictly stationary associated sequence of d-dimensional random vectors with E(Zt) = 0, $E(Zt) < +\infty$ and positive definite covariance matrix Γ as (5). Let (X_t) be a d-variate linear process defined as in (1). Assume that

$$E(\|Z\mathbf{1}\|^2) + \sum_{t=2}^{\infty} \sum_{i=1}^{d} \text{cov}(Z_{1i}, Z_{ti}) = \sigma^2 < \infty,$$
(15)

then, the linear process(X₁) fulfills the limit central theorem, that is, $Sn = n^{-1/2}S_n \rightarrow \mathcal{D} N(0,T)$, (16)

Where $\rightarrow^{\mathfrak{D}}$ denotes the convergence in distribution and N (0, T) indicates an normal distribution with mean zero vector and covariance matrix T defined in (4).

For the proof of lemma 1, see theorem 1.1 of Tae-Sung Kim, Mi-Hwa Ko and Sung-Mo Chung [1]

Lemma 2: To remark 3.2 and theorem 3.5 of Tae-Sung Kim, Mi-Hwa Ko and Sung-Mo Chung [1], we have

$$\left(nh^{p}\right)^{t/2}\left(f_{n}(x)-f(x)\right)\to^{\mathfrak{D}}N\left(0,f(x)\int K^{2}(y)dy\right). \tag{17}$$

For the proof of lemma 2, see Tae-Sung Kim, Mi-Hwa Ko and Sung-Mo Chung [1]

Lemma 3: Assume that (A_5) holds. If f_1 is continuous on \mathbb{R} and if for almost all x, h is continuous on Φ , then

- (i) for all $g \in F B(g) \neq \emptyset$.
- (ii) If B(g) is reduced to an unique element, then t is continuous on g Hellinger topology.
- (iii) $T(f_{\theta}) = \theta$ Uniquely on Θ

Proof: See Lemma 3.1 in Bitty and Hili [5].

Lemma 4: Assume that $g_{\theta} = f^{1/2}(.,\theta)$ satisfies assumptions $(A_1),-(A_3)$. Then, for all sequence of density $\{\hat{f}_n\}_{n\in\mathbb{N}}$ converges to f_n in the Hellinger topology.

$$T\left(\hat{f}_{n}\right) = T\left(f_{\theta}\right) + \int_{\mathbb{R}^{d}} \rho_{\theta}\left(x\right) \left[\hat{f}_{n}^{1/2}\left(x\right) - f_{\theta}^{1/2}\left(x\right)\right] dx + a_{n} \int_{\mathbb{R}^{d}} \dot{g}_{T\left(f_{\theta}\right)}\left(x\right) \left[\hat{f}_{n}^{1/2}\left(x\right) - f_{\theta}^{1/2}\left(x\right)\right] dx \ ,$$

where

$$\rho_{\theta}(x) = - \left[\int_{\mathbb{R}^d} \dot{g}_{\tau(f_{\theta})}(x) f_{\theta}^{1/2}(x) dx \right]^{-1} \dot{g}_{\tau(f_{\theta})}(x),$$

With $a_n \ a(q \times q)$ - matrix whose components tends to zero $n \to \infty$

Proof: See Theorem 2 in Beran [2]

Lemma 5: Under assumptions (A_3) , if the bandwidth b_n is an theorems 1 and 2, if $f(.,\theta)$ is continuous with a compact support. And if the density $f(.,\theta)$ of the observations satisfies assumptions (A_1) - (A_2) . Then $\hat{f}_n(.)$ converges to $f(.,\theta)$ in the Hellinger topology.

Proof of lemma 8

Under assumption (A_2) , (A_3) and (A_5) and lemma 2, we have

$$\left(\int_{\mathbb{R}^d} \left| \hat{f}_n^{1/2}(x) - f^{1/2} \right|^2 dx \right)^{1/2} \to 0$$
, a.s. $n \to \infty$,

Then $\hat{f}_n \to f$, a.s. $n \to \infty$ in Hellinger topology

ESTIMATION OF THE PARAMETER

This method has been introduced by Beran ^[2] for independent samples, developed by Bitty and Hili ^[5] for linear univariate processes dependent in long memory. The present paper suppose the process independent multivariate with associated random vectors under same condition of Bittyand Hili ^[5] in long memory. The minimum Hellinger distance estimate of the parameter vector is obtained via a nonparametric estimate of the density of the process (X_t) . We define $\hat{\theta}_n$ as the value of $\theta \in \Theta$ which minimizes the Hellinger distance $H_2(\hat{f}_n, f(., \theta))$

i.e:
$$H_2\left(\hat{f}_n, f\left(., \hat{\theta}_n\right)\right) = min_{\theta \in \Theta} H_2\left(\hat{f}_n, f\left(., \theta\right)\right)$$
,

where \hat{f}_{n} is the nonparametric estimate of $f(.,\theta)$ and

$$H_{2}(\hat{f}_{n}(.),f(.,\theta)) = \{ \int_{\mathbb{R}^{d}} |\hat{f}_{n}^{1/2}(x) - f^{1/2}(x,\theta) |^{2} dx \}^{1/2}$$

There exist many methods of nonparametric estimation in the literature. See for instance Rosenblatt ^[8] and therein. For computational reasons, we consider the kernel density estimate which is defined in section 2. Before analyzing the optimal properties of $\hat{\theta}_n$ we need some assumptions.

i.e:
$$H_2(\hat{f}_n, f(., \hat{\theta}_n)) = min_{\theta \theta \Theta} H_2(\hat{f}_n, f(., \theta)),$$

where \hat{f}_n is the nonparametric estimate of $f(.,\theta)$ and

$$H_2(\hat{f}_n(.), f(., \theta)) = \{ \int_{\mathbb{R}^d} |\hat{f}_n^{1/2}(x) - f^{1/2}(x, \theta)|^2 dx \}^{1/2}$$

Asymptotic properties

Theorem 1 (Almost Sure Consistency): Assume that (A_1) - (A_5) hold. Then, $\hat{\theta}_n$ almost surely converges to θ .

For the proof, see section 3.

Let denote by J_n as: $J_n = (nb_n)^{t/2}$

Let us denote by $R_{\theta}(.) = f^{1/2}(.,\theta)$, $\dot{R}_{\theta}(.) = \partial f^{1/2}(.,\theta) / \partial \theta$ and $\rho(.,\theta)$ the following function.

$$\rho(x,\theta) = \left[\int_{\mathbb{R}^d} \dot{R}_{\theta}(x) \dot{R}_{\theta}^t(x) dx \right]^{-1} \dot{R}_{\theta}(x),$$

Where $\dot{R}_{\theta}(x)$ is a quantity which exists, and t denotes the transpose.

Condition 1:

We have the $(q \times q)$ matrix sequence v_n in lemma 4 and the sequence J_n are such that $J_n v_n$ tend to zero as $n \to \infty$.

Theorem 2 (Asymptotic distribution): Assume that (A1)-(A6) and condition 1 hold. If

(i) $\int_{\mathbb{R}^d} R_{\theta}(x) R_{\theta}(x) dx$ is a nonsingular (qq) -matrix,

(ii) $\rho(.,\theta)$ admits a compact support then, we have $J_n \lceil \hat{\theta}_n - \theta \rceil \rightarrow^{\mathcal{L}} N (0; \int_{\mathbb{R}} Y(x,\theta) \sum^2 (x) Y^t(x,\theta) dx)$

For the proof, see section 3.

Appendices

Proof of theorem 1

$$H_2\Big(\hat{f}_n\big(.\big), f\big(.,\theta\big)\Big) = \left\{ \int_{\mathbb{R}} \left[\hat{f}_n^{1/2}\big(x\big) - f^{1/2}\big(x,\theta\big) \right]^2 dx \right\}^{1/2} \to 0 \quad \text{a.s. when } n \to \infty.$$

From lemma 3,

$$H_2\Big(\hat{f}_n\big(.\big),f\big(.,\theta\big)\Big) = \left\{\int_{\mathbb{R}} \left[\hat{f}_n^{1/2}\big(x\big) - f^{1/2}\big(x,\theta\big)\right]^2 dx\right\}^{1/2} \to 0 \quad \text{a.s. when } n \to \infty.$$

As $T(\hat{f}_n(.)) = \hat{\theta}_n$ and $T(f(.,\theta)) = \theta$ uniquely, the remainder of proof follows from the continuity of the functional T(.) in lemma 1.

Proof of theorem 2

From lemma 2 and the proof of theorem 2 of Bitty and Hili [5], we have

$$J_{n}\left[\hat{\theta}_{n}-\theta\right] = J_{n}\int_{\mathbb{R}}\rho(x,\theta)\left[\hat{f}_{n}^{1/2}(x)-f^{1/2}(x,\theta)\right]dx$$
$$+v_{n}J_{n}\int_{\mathbb{R}}\dot{R}(x,\theta)\left[\hat{f}_{n}^{1/2}(x)-f^{1/2}(x,\theta)\right]dx,$$

where an a (d×d)-matrix whose components tend to zero in probability when $n \to \infty$.

Under condition 1, we have

$$W_n(\theta) = V_n J_n \int_{\mathbb{R}} \dot{R}(x,\theta) \left[\hat{f}_n^{1/2}(x) - f^{1/2}(x,\theta) \right] dx \rightarrow_{\rho} 0.$$

So the limiting distribution of $J_n \left[\hat{\theta}_n - \theta \right]$ depends on the limiting distribution of $J_n L_n(\theta)$, With

$$L_{n}(\theta) = \int_{\mathbb{R}} \rho(x,\theta) \left[\hat{f}_{n}^{1/2}(x) - f^{1/2}(x,\theta) \right] dx.$$

For $a \ge 0$, $b \ge 0$, we have the algebraic identity

$$a^{1/2} - b^{1/2} = 2^{-1}b^{-1/2}\left(a - b\right) - \left[2b^{1/2}(a^{1/2} + b^{1/2})^2\right]^{-1}\left(a - b\right)^2.$$

For $a = \hat{f}_n(x)$ and $b = f(x,\theta)$, we have

$$W_{n}(\theta) = 2^{-1}v_{n}J_{n}\int_{\mathbb{R}}\dot{R}_{\theta}(x)f^{-1/2}(x,\theta)[\hat{f}_{n}(x) - f(x,\theta)]dx - 2^{-1}v_{n}J_{n}\left(\int_{\mathbb{R}}\dot{R}_{\theta}(x)f^{-1/2}\frac{(\hat{f}_{n}(x) - f(x,\theta))^{2}}{(\hat{f}_{n}^{1/2}(x) - \dot{R}_{\theta}(x)^{1/2})^{2}}dx\right)$$

$$= D_{n}(\theta) + E_{n}(\theta)$$

With

$$D_n(\theta) = 2^{-1} v_n J_n \int_{\mathbb{D}} \dot{R}_{\theta}(x) f^{-1/2}(x,\theta) \left[\hat{f}_n(x) - f(x,\theta) \right] dx$$

And

$$E_{n}(\theta) = -2^{-1}v_{n}J_{n}\left(\int_{\mathbb{R}}\dot{R}_{\theta}(x)f^{-1/2}\frac{(\hat{f}_{n}(x) - f(x,\theta))^{2}}{(\hat{f}_{n}^{1/2}(x) - \dot{R}_{\theta}(x)^{1/2})^{2}}dx\right)$$

From assumption (A6), then $\inf_{x} f(x, \theta) \ge \beta > 0$,

$$\left|E_n(\theta)\right| \leq 2^{-1}\beta^{-3/2}v_nJ_n\int_{\mathbb{R}}\left|\dot{R}_{\theta}(x)\right|\left[\hat{f}_n(x) - f(x,\theta)\right]^2dx.$$

For
$$a \ge 0$$
, $b > 0$, $(a-b)^2 \le 2(a^2 + b^2)$, then

$$\begin{aligned} \left| E_n(\theta) \right| &\leq \beta^{-3/2} \mathsf{v}_n J_n \int_{\mathbb{R}} \left| \dot{R}_{\theta}(x) \right| \left[\hat{f}_n(x) - f(x,\theta) \right]^2 dx + \beta^{-3/2} \mathsf{v}_n J_n \int_{\mathbb{R}} \left| \dot{R}_{\theta}(x) \right| \left[E(\hat{f}_n(x)) - f(x,\theta) \right]^2 dx \\ &= E_{n1}(\theta) + E_{n2}(\theta) \end{aligned}$$

With

$$E_{n1}(\theta) = \beta^{-3/2} \mathsf{v}_n \mathsf{J}_n \int_{\mathbb{R}} |\dot{\mathsf{R}}_{\theta}(x)| \left| \hat{\mathsf{f}}_n(x) - \mathsf{f}(x,\theta) \right|^2 dx$$

And

$$E_{n2}(\theta) = \beta^{-3/2} \mathbf{v}_n J_n \int_{\mathbb{D}} \left| \dot{R}_{\theta}(\mathbf{x}) \right| \left[E\left(\hat{f}_n(\mathbf{x})\right) - f(\mathbf{x}, \theta) \right]^2 d\mathbf{x}$$

Under assumptions (A1)-(A2) we apply Taylor Lagrange in order 2 and assumption (A4) we have:

$$E(\hat{f}_n(x)) - f(x,\theta) = \int_{\mathbb{R}} \left[f(x - b_n z, \theta) - f(x,\theta) \right] K(z) dz$$
$$= \int_{\mathbb{R}} \left(-b_n z f'(x,\theta) + 2^{-1} b_n^2 z^2 f''(x,\theta) \right) K(z) dz$$
$$= 2^{-1} b_n^2 f''(x,\theta) \int_{\mathbb{R}} z^2 K(z) dz$$

So

$$\sup_{x} \left| E\left(\hat{f}_{n}(x)\right) - f(x,\theta) \right| \le 2^{-1} b_{n}^{2} \sup \left| f''(x,\theta) \right| \int_{\mathbb{R}} z^{2} K(z) dz$$
$$= O(b_{n}^{2}) \quad \text{when } n \to \infty$$

So

$$E_{n2}(\theta) \rightarrow 0$$
 when $n \rightarrow \infty$

Furthermore, we have
$$\hat{f}_n(x) - E(\hat{f}_n(x)) = b_n^{-1} \int_{\mathbb{R}} K \frac{x-y}{b} d(F_n(y) - F(y))$$

where F_c(.) and F(.) are respectively the empirical distribution function and distribution function of the process.

By integration by part, we have

$$\begin{aligned} \hat{f}_n(x) - E(\hat{f}_n(x)) &= -b_n^{-1} \int_{\mathbb{R}} K'(z) (F_n(x - b_n z) - F(x - b_n z)) dz \\ \sup_{x} |\hat{f}_n(x) - E(\hat{f}_n(x))| &= b_n^{-1} \sup_{x} |F_n(x) - F(x)| \int_{\mathbb{R}} |K'(z)| dz \end{aligned}$$

From Ho and Hsing [9,10] (theorem 2.1 and remark 2.2) and assumptions (A2) and (A4), we have

$$n^{\lambda+1/2}L^{-1}(n)\sup_{x}\left|F_{n}(x)-F(x)\right|\rightarrow^{\mathfrak{D}}\left|\Phi\right|\sup_{x}\left(f(x)\right)$$

where Φ is a standard Gaussian random variable and !D denotes convergence in distribution.

So

$$\begin{aligned} b_{n}^{-1} sup_{x} \left| \hat{f}_{n}(x) - E(\hat{f}_{n}(x)) \right| \int_{\mathbb{R}} \left| K'(z) \right| dz &\leq \frac{1}{n^{\lambda+1/2} b_{n} L^{-1}(n)} sup_{x} \left| n^{\lambda+1/2} b_{n} L^{-1}(n) F_{n}(x) - F(x) \right| \times \int_{\mathbb{R}} \left| K'(z) \right| dz \\ &\simeq \left(n^{\lambda+1/2} b_{n} L^{-1}(n) \right)^{-1} sup_{x} \left| f(x) \right| \left| \ddot{O} \right| \int_{\mathbb{R}} \left| K'(z) \right| dz \end{aligned}$$

where \simeq . For all $\xi > 0$,

$$Prob(\left(n^{\lambda+1/2}b_{n}L^{-1}(n)\right)^{-1}sup_{x}\left|f(x)\right|\left|\Phi\right|>\xi)\leq\left(n^{\lambda+1/2}b_{n}L^{-1}(n)\right)^{-2}(sup_{x}\left|f(x)\right|)^{2}\times Var(\left|\Phi\right|)\times \frac{1}{\xi^{2}}$$

The convergence of $\left(n^{\lambda+1/2}b_nL^{-1}(n)\right)^{-2}(\sup_x\left|f(x)\right|)^2\times Var(\left|\Phi\right|)$ depends on the convergence of $\left(n^{\lambda+1/2}b_nL^{-1}(n)\right)^{-2}$.

So under assumptions $b_n \to 0, n \to \infty, nb_n \to \infty$ and $n'b_n \to \infty$ for $3 \le \iota \le 5$, we have

$$(n^{\lambda+1/2}b_nL^{-1}(n))^{-2} = [n^{\lambda+1/2}b_n]^{-2}L^2(n)$$

$$= o([n^{\lambda+1/2}b_n]^{-2})$$

$$\to 0 \text{ when } n \to \infty.$$

We have $(\sup_{x} |f(x)|)^2 < \infty$ and $Var(|\Phi|) < \infty$, so

$$(n^{\lambda+1/2}b_nL^{-1}(n))^{-1}\sup_x |f(x)||\ddot{O}| \to_p O \text{ when } n \to \infty.$$

So $E_{n1} \to^{p} 0$ when $n \to \infty$.

Then $E_n \to^p 0$ when $n \to \infty$.

$$D_{n}(\theta) = 2^{-1}v_{n}J_{n}\int_{\mathbb{R}}\dot{R}_{\theta}(x,\theta)f^{-1/2}(x,\theta)\Big[\hat{f}_{n}(x) - E(\hat{f}_{n}(x))\Big]dx + 2^{-1}v_{n}J_{n}\int_{\mathbb{R}}\dot{R}_{\theta}(x,\theta)f^{-1/2}(x,\theta)[E(\hat{f}_{n}(x)) - f(x,\theta)]dx$$

$$= D_{n1}(\theta) + D_{n2}(\theta)$$

With

$$D_{n1}(\theta) = 2^{-1} v_n J_n \int_{\mathbb{D}} \dot{R}_{\theta}(x, \theta) f^{-1/2}(x, \theta) \left[\hat{f}_n(x) - E(\hat{f}_n(x)) \right] dx$$

and

$$D_{n1}(\theta) = 2^{-1} v_n J_n \int_{\mathbb{D}} \dot{R}_{\theta}(x,\theta) f^{-1/2}(x,\theta) \left[E(\hat{f}_n(x)) - f(x,\theta) \right] dx.$$

Under assumptions (A1) – (A2) we apply Taylor-Lagrange formula in $D_{n2}(\theta) \rightarrow 0$ when $n \rightarrow \infty$. order 2 and assumption (A4), we have

Furthermore, from propositions 1, 2 and 3, we have

Part (a)

$$J_n \Big[\hat{f}_n(x) - E \Big(\hat{f}_n(x) \Big) \Big] \rightarrow^{\mathcal{L}} N \Big(0; \sum^2 (x) \Big)$$

or

$$J_n \Big[\hat{f}_n(x) - E \Big(\hat{f}_n(x) \Big) \Big] \Rightarrow U(x),$$

Where $\sum^{2}(x)$ and U(x) take values according to the different points of the proof of lemma 3:

$$\sum^{2}(x) = \begin{cases} f(x,\theta) \int_{\mathbb{R}} K^{2} du & in(i) \\ \left| f^{(1)}(x,\theta) \right|^{2} & in(ii) \\ \left| f^{(r)}(x,\theta) k_{r-1} \right|^{2} & in(iii) \\ \sigma^{2}(x,c) & in(v) \end{cases}$$

and

$$U(x) = \begin{cases} (-1)^{r} Z_{r,\lambda} f^{(r)}(x,\theta) & in(iv) \\ \sum_{j=0}^{r-1} \left[\frac{C(\lambda, r-j)}{C^{r-j-1}(\lambda, 1)} \right]^{1/2} \times \frac{k_{j}}{C^{r-j-1}(\lambda, 1)} Z_{r-j,\lambda} f^{(r)}(x,\theta). & in(vi) \end{cases}$$

Here $Z_{r,\lambda}$ is the Multiple Wiener-Itô Integral defined in the relation (9) of section 1.1 and $\sigma^2(x,c)$ is defined in the first point of proposition 3. Denote by $Y_1(x,\theta) = \dot{R}_{\theta}(x)f^{-1/2}(x,\theta)$

$$Y_1(x,\theta)J_n\Big[\hat{f}_n(x)-E\Big(\hat{f}_n(x)\Big)\Big] \rightarrow^{\mathcal{L}} N\Big(0,Y_1(x,\theta)\sum^2(x)Y_1^t(x,\theta)\Big)$$

or

$$Y_1(x,\theta)J_n\Big[\hat{f}_n(x)-E\Big(\hat{f}_n(x)\Big)\Big] \Rightarrow Y_1(x,\theta)U(x)Y_1^t(x,\theta).$$

We deduce that

$$\int_{\mathbb{R}} Y_{1}(x,\theta) J_{n} \Big[\hat{f}_{n}(x) - E \Big(\hat{f}_{n}(x) \Big) \Big] dx \rightarrow^{\mathcal{L}} N \Big(0, \int_{\mathbb{R}} Y_{1}(x,\theta) \sum^{2} (x) Y_{1}^{t}(x,\theta) \Big) dx.$$

or

$$\int_{\mathbb{D}} Y_1(x,\theta) J_n \Big[\hat{f}_n(x) - E \Big(\hat{f}_n(x) \Big) \Big] dx \Rightarrow \int_{\mathbb{D}} Y_1(x,\theta) U(x) Y_1^t(x,\theta) dx$$

Were call that $v_n \to^p 0$ when $n \to \infty$, then $D_{n1} \to^p 0$ when $n \to \infty$. So we conclude that $D \to 0$ when $n \to \infty$

Part (b)

$$J_{n}L_{n}(\theta) = 2^{-1}J_{n}\int_{\mathbb{R}}\rho(x,\theta)f(x,\theta)^{-1/2}\left[\hat{f}_{n}(x) - f(x,\theta)\right]dx + 2^{-1}J_{n}\left(\int_{\mathbb{R}}\rho(x,\theta)f(x,\theta)^{-1/2}\frac{(\hat{f}_{n}(x) - f(x,\theta))^{2}}{(\hat{f}_{n}^{1/2}(x) - f(x,\theta)^{1/2})^{2}}dx\right)$$

$$= D_{n}'(\theta) + E_{n}'(\theta)$$

with

$$D_n'(\theta) = 2^{-1} J_n \int_{\mathbb{R}} \rho(x, \theta) f(x, \theta)^{-1/2} \left[\hat{f}_n(x) - f(x, \theta) \right] dx$$

and

$$E_{n}'(\theta) = 2^{-1} J_{n} \left(\int_{\mathbb{R}} \rho(x,\theta) f(x,\theta)^{-1/2} \frac{(\hat{f}_{n}(x) - f(x,\theta))^{2}}{(\hat{f}_{n}^{1/2}(x) - f(x,\theta)^{1/2})^{2}} dx \right)$$

From part (a), the proof of $E_n(\theta)$ is the same as the proof of $E_n(\theta)$. Were place $\dot{R}_{\theta}(x,\theta)$ by (x,θ) . Then, $E_n(\theta) \to^p 0$, when $n \to \infty$. Hence it suffices to prove that the limiting distribution of $J_n[\hat{\theta}_n - \theta]$ is the same as the limiting distribution of $D_n(\theta)$. Since $\hat{f}_n(x) - f(x,\theta) = (\hat{f}_n(x) - E(\hat{f}_n(x))) + (E(\hat{f}_n(x)) - f(x,\theta))$,

then

with

$$G_n(\theta) = 2^{-1} J_n \int_{\mathbb{R}} \rho(x, \theta) f^{-1/2}(x, \theta) \left[\hat{f}_n(x) - E(\hat{f}_n(x)) \right] dx$$

and

$$G_n'(\theta) = 2^{-1} J_n \int_{\mathbb{R}} \rho(x,\theta) f^{-1/2}(x,\theta) \Big[E(\hat{f}_n(x)) - f(x,\theta) \Big] dx$$

From the proof of lemma 3 (part (b)), we have:

$$J_n(E(\hat{f}_n(x)) - f(x,\theta)) \to 0$$
, when $n \to \infty$,

then

$$G_n(\theta) \rightarrow 0$$
, when $n \rightarrow \infty$

From propositions 1, 2 and 3, we have:

$$J_n\left[\hat{f}_n(x) - E\left(\hat{f}_n(x)\right)\right] \to^{\mathcal{L}} N\left(0; \sum^2(x)\right)$$

or

$$J_n \Big[\hat{f}_n(x) - E(\hat{f}_n(x)) \Big] \Rightarrow U(x).$$

Denote by $Y(x,\theta) = \rho(x,\theta) f^{-1/2}(x,\theta)$

$$Y(x,\theta)J_n\left[\hat{f}_n(x)-E\left(\hat{f}_n(x)\right)\right] \rightarrow^{\mathcal{L}} N\left(0,Y(x,\theta)\sum^2(x)Y^t(x,\theta)\right)$$

or

$$Y(x,\theta)J_n\Big[\hat{f}_n(x)-E(\hat{f}_n(x))\Big] \Rightarrow Y(x,\theta)U(x)Y^t(x,\theta)$$

We deduce that

$$\int_{\mathbb{R}} Y(x,\theta) J_n \Big[\hat{f}_n(x) - E \Big(\hat{f}_n(x) \Big) \Big] dx \to^{\mathcal{L}} N \Big(0, \int_{\mathbb{R}} Y(x,\theta) \sum^2 (x) Y^t(x,\theta) \Big) dx.$$

or

$$\int_{\mathbb{R}} Y(x,\theta) J_n \Big[\hat{f}_n(x) - E\Big(\hat{f}_n(x)\Big) \Big] dx \Rightarrow \int_{\mathbb{R}} Y(x,\theta) U(x) Y^t(x,\theta) dx$$

So,

$$G_n(\theta) \to^{\mathcal{L}} N(0; \int_{\mathbb{R}} Y(x,\theta) \sum^2 (x) Y^t(x,\theta) dx.)$$

or

$$G_n(\theta) \Rightarrow \int_{\mathbb{R}} Y(x,\theta) U(x) Y^t(x,\theta) dx.$$

Then.

$$D_n'(\theta) \rightarrow^{\mathcal{L}} N(0; \int_{\mathbb{D}} Y(x,\theta) \sum^2 (x) Y^t(x,\theta) dx.)$$

or

$$D_n(\theta) \int_{\mathbb{R}} Y(x,\theta) U(x) Y^t(x,\theta) dx.$$

CONCLUSION

We conclude that we have either an asymptotic normal distribution or an asymptotic process towards the Multiple Wiener-Itô Integral.

REFERENCES

- 1. Tae-Sung K et al. A central limit theorem for the stationary multivariate linear process generated by associated random vectors. Commun Korean Math Soc. 17 2002;17:95-102.
- 2. Beran R. Minimum Hellinger distance estimates for parametric models. Ann Stat. 1977;5:445-463.
- 3. Beran R. An efficient and robust adaptive estimator of location. Ann Stat. 1978;6:292-313.
- 4. Beran R. Efficient robust estimates in parametric models. Z Walrsch Verw Gebiete. 1985;55:91-108.
- 5. Bitty AL and Hili O. Hellinger distance estimates of long memory linear processes. CR Acad Sci Paris Ser. 2010;348:445-448.
- 6. Cacoullos T. Estimation of a multi-variate density. Ann Inst Statist Math. 1966;18:179-189.
- 7. Prazen E. Estimation of a probability density function and mode. Ann Math Statist.1962;33:1065-1076.
- 8. Rosenblatt M. Remarks on some non-parametric estimates of a density function. Ann Math Statist. 1985;27:832-837.
- 9. Ho HC and Hsing T. On the asymptotic expansion of the empirical process of long memory moving averages. Ann Statist. 1996;24:992-1024.
- 10. Ho HC and Hsing T. Limit theorems for functionals of moving averages. Ann Probab. 1997;25:1636-1669.