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Abstract: Association rule mining is one of the most popular data mining methods. However, mining association rules often results in a very large number of 
found rules, leaving the analyst with the task to go through all the rules and discover interesting ones. In this paper, we present the performance comparison of 
Apriori and FP-growth algorithms. The performance is analyzed based on the execution time for different number of instances and confidence in Super market 
data set. These algorithms are presented together with some experimental data.  Our performance study shows that the FP-growth method is efficient and scalable 
and is about an order of magnitude faster than the Apriori algorithm. 
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INTRODUCTION  

Data Mining is often defined as finding hidden information 
in a database. Alternatively, it has been called exploratory 
data analysis, data driven discovery and deductive learning 
[2]. Among the areas of data mining, the problem of 
deriving associations from data has received a great deal of 
attention. Association rules are used to identify relationships 
among a set of items in database. These relationships are not 
based on inherent properties of the data themselves (as with 
functional dependencies), but rather based on co-occurrence 
of the data items[1].  
 
Association Rule Mining finds application in market basket 
analysis. The market analysts would be interested in 
identifying frequently purchased items, so that the 
organization can adapt effective shelf space management 
and efficient sales strategies. Two strategically measures of 
significant that control the process of association rule 
mining are support and confidence. Support is the statistical 
significance of a rule while confidence is the degree of 
certainty of the detective associations the entire process of 
association mining is controlled by user specified 
parameters, namely, minimum support and confidence.  
 
The main aim of this paper is to evaluate the performance of 
Apriori and FP-growth algorithms among the various 
algorithms in Association Rule Mining. The main difference 
between the two approaches is that the Apriori-like 
techniques are based on bottom-up generation of frequent 

itemset combinations and the FP-growth based ones are 
partition-based, divide-and-conquer methods. Also the 
Apriori algorithms generate the candidate itemsets but FP-
growth does not generate the candidate itemset. 

ASSOCIATION RULE MINING ALGORITHMS 

In general, the association rule is an expression of the form 
X=>Y, where X is antecedent and Y is consequent. 

Association rule shows how many times Y has occurred if X 
has already occurred depending on the support and 
confidence value. Many algorithms for generating 
association rules were presented over time. Some well 
known algorithms are Apriori and FP-Growth. 

Apriori Algorithm 

Apriori is the best-known algorithm to mine association 
rules. It uses a breadth-first search strategy to counting the 
support of itemsets and uses a candidate generation function 
which exploits the downward closure property of support. 
Apriori uses a "bottom up" approach, where frequent subsets 
are extended one item at a time (a step known as candidate 

generation), and groups of candidates are tested against the 
data. The algorithm terminates when no further successful 
extensions are found. 
A. Let’s define: 
 Ck as a candidate itemset of size k  
 Lk as a frequent itemset of size k 
B. Main steps of  iteration are: 
a. Find frequent set Lk-1  
b. Join step: Ck is generated by joining Lk-1 with itself 

(cartesian product Lk-1 x Lk-1) 
c. Prune step (apriori property): Any (k − 1) size itemset 

that is not frequent cannot be a subset of a frequent k 
size itemset, hence should be removed 

d. Frequent set Lk has been achieved 
The Apriori algorithm is  
L1= {frequent items}; 
for (k= 2; Lk-1 !=�; k++) do begin 
Ck= candidates generated from Lk-1 (that is: Cartesian 
product Lk-1 x Lk-1 and eliminating any  
k-1 size itemset that is not frequent); 
for each transaction t in database do 
increment the count of all candidates in  
 Ck that are contained in t 
Lk = candidates in Ck with min_sup  
end 

return ∪k Lk;  
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FP-growth (frequent pattern growth) uses an extended 
prefix-tree (FP-tree) structure to store the database in a 
compressed form. FP-growth adopts a divide-and-conquer 
approach to decompose both the mining tasks and the 
databases. It uses a pattern fragment growth method to avoid 
the costly process of candidate generation and testing used 
by Apriori.  

FP-Growth adopts a divide-and-conquer strategy as follows. 
First, it compresses the database representing frequent items 
into a frequent-pattern tree or FP-tree, which retains the 
itemsets association information. It then divides the 
compressed database into a set of conditional databases. 
Each associated with one frequent item and mines each such 
database separately. 

Definition 1 (FP-tree) A frequent pattern tree is a tree 
structure defined below. 
 
A. It consists of one root labeled as “root”, a set of item 

prefix sub-trees as the children of the root, and a 
frequent-item header table. 

B. Each node in the item prefix sub-tree consists of three 
fields: item-name, count, and node-link, where item-

name registers which item this node represents, count 

registers the number of transactions represented by the 
portion of the path reaching this node, and node-link 

links to the next node in the FP-tree carrying the same 
item-name, or null if there is none. 

C. Each entry in the frequent-item header table consists of 
two fields, (1) item-name and (2) head of node-link, 
which points to the first node in the FP-tree carrying 
the item-name.[3] 

The actual algorithm  is: 
 

Algorithm (FP-tree construction) 

Input: A transactional database DB and a minimum support 
threshold �. 
Output: Its frequent pattern tree, FP-tree 

Method: The FP-tree is constructed in the following steps: 
a. Scan the transaction database DB once. Collect the set 

of frequent items F and their supports. Sort F in support 
descending order as L, the list of frequent items. 

b. Create the root of an FP-tree, T, and label it as “root”. 
For each transaction Trans in DB do the following. 

c. Select and sort the frequent items in Trans 

according to the order of L. Let the sorted frequent item 
list in Trans be [p | P], where p is the first element and 
P  is the remaining list. Call insert_tree([p | P], T). 

d. The function insert_tree([p | P], T) is performed as 
follows. If T has a child N such that N.item-name = 
p.item-name, then increment N’s count by 1; else create 
a new node N, and let its count be 1, its parent link be 
linked to T, and its node-link be linked to the nodes 
with the same item-name via the node-link structure. If 
P is nonempty, call insert_tree(P, N) recursively. 

 
The FP-growth algorithm for mining frequent patterns with 
FP-tree by pattern fragment growth is: 
Input: a FP-tree constructed with the above mentioned 
algorithm; 
D – transaction database; 
s – minimum support threshold. 

 
Output: The complete set of frequent patterns. 
Method: 
call FP-growth(FP-tree, null). 
Procedure FP-growth (Tree, A) 
{ 
if Tree contains a single path P 

then for each combination (denoted as B) of the nodes in 
the path P do 

generate pattern B � A with support=minimum support of 

nodes in B 

else for each ai in the header of the Tree do 

{ 
generate pattern B = ai � A with support = ai.support; 
construct B’s conditional pattern base and B’s conditional 
FP-tree 

TreeB; 
if TreeB � Ø 
then call FP-growth (TreeB, B) 
} 
} 

METHODOLOGY 

The two association rule mining algorithms were tested in 
WEKA software of version 3.6.1. WEKA software is a 
collection of open source of many data mining and machine 
learning algorithms, including pre-processing on data, 
Classification, clustering and association rule extraction. 
 
The performance of Apriori and FP-growth were evaluated 
based on execution time. The execution time is measured for 
different number of instances and Confidence level on Super 
market data set. 

 
We have analyzed both algorithms for super market data set.  
This data set contains 4627 instances and 217 attributes. For 
our experiment we have imported   the data set in ARFF 
format.  
  
For evaluating the efficiency, we have used the GUI based 
WEKA Application. The database is loaded using OpenFile 
in the preprocess tab. In the Associate tab we have selected 
the APriori and FP-growth algorithms to measure the 
execution time  

RESULT AND DISCUSSION 

In this section, we present a performance comparison of 
ARM algorithms. The following tables present the test 
results of Apriori and FP-growth for different number of 
instances and Confidence.. 

 

Table I    Execution Time for Different Number Of Instances 

No. of 

Instances 

Execution Time (in Secs) 

Apriori FP-growth 

3627 47 3 

1689 25 2 

941 8 1 

 
As a result, when the number of instances decreased, the 
execution time for both algorithms is decreased. For the 
3627 instances of supermarket data set, APriori requires 47 
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seconds but FP-growth requires only 3seconds for 
generating the association rules.  

 
Figure1. Scalability of Apriori and FP-growth 

 
In the above Figure 1, the performance of Apriori is 
compared with FP-growth, based on time. For each 
algorithm, three different size of data set were considered 
with sizes of 3627, 1689 and 941. Here the x-axis shows 
size of database in number of instances and y-axis shows the 
execution time in seconds. 

 
When comparing Apriori with FP-Growth the FP-growth 
algorithm requires less time for any number of instances.  
So, the performance of FP-growth outperforms Apriori 
based on time for various numbers of instances. 

 
Table II. Execution Time for Different Confidence Level 

 

Confidence 
Execution Time(in Secs) 

Apriori FP-growth 

0.5 15 1 

0.7 18 2 

0.9 56 3 

 
Table II summarizes that the execution time of Apriori and 
FP-growth.for various confidence level. When Confidence 
level is high, the time taken for both algorithms is also high. 
While the Confidence level is 0.5, the time taken to generate 
the association rule is 15seconds in Apriori and 1 second in 
FP-growth. 

 

  
Figure 2 shows the relationship between the time and 
confidence. In this graph, x axis represents the time and y 
axis represents the Confidence. The running time for FP-
growth with confidence of 0.9 is much higher than running 
time of Apriori. 
 
It says that, the time taken to execute the FP-growth is less 
compared with Apriori for any Confidence level. Thus the 
performance of FP-growth Algorithm is an efficient and 
scalable method for mining the complete set of frequent 
patterns 

CONCLUSION 

The association rules play a major role in many data mining 
applications, trying to find interesting patterns in data bases. 
In order to obtain these association rules the frequent sets 
must be previously generated. The most common algorithms 
which are used for this type of actions are the Apriori and 
FP-Growth. The performance analysis is done by varying 
number of instances and confidence level. The efficiency of 
both algorithms is evaluated based on time to generate the 
association rules. From the experimental data presented it 
can be concluded that the FP-growth algorithm behaves 
better than the Apriori algorithm.  
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