
Volume 2, No. 6, June 2011

Journal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info�

© JGRCS 2010, All Rights Reserved 101

EVALUATING THE PERFORMANCE OF ASSOCIATION RULE MINING

ALGORITHMS

K.Vanitha*1, R.Santhi2
1Department of Computer Studies, Saranathan College of Engineering, Trichy,India

rkvanithamca@gmail.com
2Department of Computer Studies. Saranathan College of Engineering, Trichy,India

anandsanthi@rediff.com

Abstract: Association rule mining is one of the most popular data mining methods. However, mining association rules often results in a very large number of
found rules, leaving the analyst with the task to go through all the rules and discover interesting ones. In this paper, we present the performance comparison of
Apriori and FP-growth algorithms. The performance is analyzed based on the execution time for different number of instances and confidence in Super market
data set. These algorithms are presented together with some experimental data. Our performance study shows that the FP-growth method is efficient and scalable
and is about an order of magnitude faster than the Apriori algorithm.

Keywords – Apriori, FP-growth, Confidence

INTRODUCTION

Data Mining is often defined as finding hidden information
in a database. Alternatively, it has been called exploratory
data analysis, data driven discovery and deductive learning
[2]. Among the areas of data mining, the problem of
deriving associations from data has received a great deal of
attention. Association rules are used to identify relationships
among a set of items in database. These relationships are not
based on inherent properties of the data themselves (as with
functional dependencies), but rather based on co-occurrence
of the data items[1].

Association Rule Mining finds application in market basket
analysis. The market analysts would be interested in
identifying frequently purchased items, so that the
organization can adapt effective shelf space management
and efficient sales strategies. Two strategically measures of
significant that control the process of association rule
mining are support and confidence. Support is the statistical
significance of a rule while confidence is the degree of
certainty of the detective associations the entire process of
association mining is controlled by user specified
parameters, namely, minimum support and confidence.

The main aim of this paper is to evaluate the performance of
Apriori and FP-growth algorithms among the various
algorithms in Association Rule Mining. The main difference
between the two approaches is that the Apriori-like
techniques are based on bottom-up generation of frequent

itemset combinations and the FP-growth based ones are
partition-based, divide-and-conquer methods. Also the
Apriori algorithms generate the candidate itemsets but FP-
growth does not generate the candidate itemset.

ASSOCIATION RULE MINING ALGORITHMS

In general, the association rule is an expression of the form
X=>Y, where X is antecedent and Y is consequent.

Association rule shows how many times Y has occurred if X
has already occurred depending on the support and
confidence value. Many algorithms for generating
association rules were presented over time. Some well
known algorithms are Apriori and FP-Growth.

Apriori Algorithm

Apriori is the best-known algorithm to mine association
rules. It uses a breadth-first search strategy to counting the
support of itemsets and uses a candidate generation function
which exploits the downward closure property of support.
Apriori uses a "bottom up" approach, where frequent subsets
are extended one item at a time (a step known as candidate

generation), and groups of candidates are tested against the
data. The algorithm terminates when no further successful
extensions are found.
A. Let’s define:
 Ck as a candidate itemset of size k
 Lk as a frequent itemset of size k
B. Main steps of iteration are:
a. Find frequent set Lk-1
b. Join step: Ck is generated by joining Lk-1 with itself

(cartesian product Lk-1 x Lk-1)
c. Prune step (apriori property): Any (k − 1) size itemset

that is not frequent cannot be a subset of a frequent k
size itemset, hence should be removed

d. Frequent set Lk has been achieved
The Apriori algorithm is
L1= {frequent items};
for (k= 2; Lk-1 !=�; k++) do begin
Ck= candidates generated from Lk-1 (that is: Cartesian
product Lk-1 x Lk-1 and eliminating any
k-1 size itemset that is not frequent);
for each transaction t in database do
increment the count of all candidates in
 Ck that are contained in t
Lk = candidates in Ck with min_sup
end

return ∪k Lk;

K.Vanitha et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,

© JGRCS 2010, All Rights Reserved 102

FP-growth (frequent pattern growth) uses an extended
prefix-tree (FP-tree) structure to store the database in a
compressed form. FP-growth adopts a divide-and-conquer
approach to decompose both the mining tasks and the
databases. It uses a pattern fragment growth method to avoid
the costly process of candidate generation and testing used
by Apriori.

FP-Growth adopts a divide-and-conquer strategy as follows.
First, it compresses the database representing frequent items
into a frequent-pattern tree or FP-tree, which retains the
itemsets association information. It then divides the
compressed database into a set of conditional databases.
Each associated with one frequent item and mines each such
database separately.

Definition 1 (FP-tree) A frequent pattern tree is a tree
structure defined below.

A. It consists of one root labeled as “root”, a set of item

prefix sub-trees as the children of the root, and a
frequent-item header table.

B. Each node in the item prefix sub-tree consists of three
fields: item-name, count, and node-link, where item-

name registers which item this node represents, count

registers the number of transactions represented by the
portion of the path reaching this node, and node-link

links to the next node in the FP-tree carrying the same
item-name, or null if there is none.

C. Each entry in the frequent-item header table consists of
two fields, (1) item-name and (2) head of node-link,
which points to the first node in the FP-tree carrying
the item-name.[3]

The actual algorithm is:

Algorithm (FP-tree construction)

Input: A transactional database DB and a minimum support
threshold �.
Output: Its frequent pattern tree, FP-tree

Method: The FP-tree is constructed in the following steps:
a. Scan the transaction database DB once. Collect the set

of frequent items F and their supports. Sort F in support
descending order as L, the list of frequent items.

b. Create the root of an FP-tree, T, and label it as “root”.
For each transaction Trans in DB do the following.

c. Select and sort the frequent items in Trans

according to the order of L. Let the sorted frequent item
list in Trans be [p | P], where p is the first element and
P is the remaining list. Call insert_tree([p | P], T).

d. The function insert_tree([p | P], T) is performed as
follows. If T has a child N such that N.item-name =
p.item-name, then increment N’s count by 1; else create
a new node N, and let its count be 1, its parent link be
linked to T, and its node-link be linked to the nodes
with the same item-name via the node-link structure. If
P is nonempty, call insert_tree(P, N) recursively.

The FP-growth algorithm for mining frequent patterns with
FP-tree by pattern fragment growth is:
Input: a FP-tree constructed with the above mentioned
algorithm;
D – transaction database;
s – minimum support threshold.

Output: The complete set of frequent patterns.
Method:
call FP-growth(FP-tree, null).
Procedure FP-growth (Tree, A)
{
if Tree contains a single path P

then for each combination (denoted as B) of the nodes in
the path P do

generate pattern B � A with support=minimum support of

nodes in B

else for each ai in the header of the Tree do

{
generate pattern B = ai � A with support = ai.support;
construct B’s conditional pattern base and B’s conditional
FP-tree

TreeB;
if TreeB � Ø
then call FP-growth (TreeB, B)
}
}

METHODOLOGY

The two association rule mining algorithms were tested in
WEKA software of version 3.6.1. WEKA software is a
collection of open source of many data mining and machine
learning algorithms, including pre-processing on data,
Classification, clustering and association rule extraction.

The performance of Apriori and FP-growth were evaluated
based on execution time. The execution time is measured for
different number of instances and Confidence level on Super
market data set.

We have analyzed both algorithms for super market data set.
This data set contains 4627 instances and 217 attributes. For
our experiment we have imported the data set in ARFF
format.

For evaluating the efficiency, we have used the GUI based
WEKA Application. The database is loaded using OpenFile
in the preprocess tab. In the Associate tab we have selected
the APriori and FP-growth algorithms to measure the
execution time

RESULT AND DISCUSSION

In this section, we present a performance comparison of
ARM algorithms. The following tables present the test
results of Apriori and FP-growth for different number of
instances and Confidence..

Table I Execution Time for Different Number Of Instances

No. of

Instances

Execution Time (in Secs)

Apriori FP-growth

3627 47 3

1689 25 2

941 8 1

As a result, when the number of instances decreased, the
execution time for both algorithms is decreased. For the
3627 instances of supermarket data set, APriori requires 47

K.Vanitha et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,

© JGRCS 2010, All Rights Reserved 103

seconds but FP-growth requires only 3seconds for
generating the association rules.

Figure1. Scalability of Apriori and FP-growth

In the above Figure 1, the performance of Apriori is
compared with FP-growth, based on time. For each
algorithm, three different size of data set were considered
with sizes of 3627, 1689 and 941. Here the x-axis shows
size of database in number of instances and y-axis shows the
execution time in seconds.

When comparing Apriori with FP-Growth the FP-growth
algorithm requires less time for any number of instances.
So, the performance of FP-growth outperforms Apriori
based on time for various numbers of instances.

Table II. Execution Time for Different Confidence Level

Confidence
Execution Time(in Secs)

Apriori FP-growth

0.5 15 1

0.7 18 2

0.9 56 3

Table II summarizes that the execution time of Apriori and
FP-growth.for various confidence level. When Confidence
level is high, the time taken for both algorithms is also high.
While the Confidence level is 0.5, the time taken to generate
the association rule is 15seconds in Apriori and 1 second in
FP-growth.

Figure 2 shows the relationship between the time and
confidence. In this graph, x axis represents the time and y
axis represents the Confidence. The running time for FP-
growth with confidence of 0.9 is much higher than running
time of Apriori.

It says that, the time taken to execute the FP-growth is less
compared with Apriori for any Confidence level. Thus the
performance of FP-growth Algorithm is an efficient and
scalable method for mining the complete set of frequent
patterns

CONCLUSION

The association rules play a major role in many data mining
applications, trying to find interesting patterns in data bases.
In order to obtain these association rules the frequent sets
must be previously generated. The most common algorithms
which are used for this type of actions are the Apriori and
FP-Growth. The performance analysis is done by varying
number of instances and confidence level. The efficiency of
both algorithms is evaluated based on time to generate the
association rules. From the experimental data presented it
can be concluded that the FP-growth algorithm behaves
better than the Apriori algorithm.

REFERENCES

[1] M., Suraj Kumar Sudhanshu, Ayush Kumar and Ghose
M.K., “Optimized association rule mining using
genetic algorithm Anandhavalli Advances in
Information Mining” , ISSN: 0975–3265, Volume 1,
Issue 2, 2009, pp-01-04

[2] Margret H. Dunham, S.Sridhar, “Data mining
Introductory and advanced topics”, Pearson
Education,Second Edition,2007.

[3] Daniel Hunyadi, “Performance comparison of Apriori
and FP-Growth algorithms in generating association
rules”, Proceedings of the European Computing
Conference

[4] Time.Dr (Mrs).Sujni Paul, “An Optimized Distributed
Association Rule Mining Algorithm In Parallel And
Distributed Data Data Mining With XML Data For
Improved Response”, International Journal of Computer
Science and Information Technology, Volume 2,
Number 2, April 2010

[5] Jiawei Han, Jian Pei, and Yiwen Yin, “Mining Frequent
Patterns without Candidate Generation” SIGMOD'2000
Paper ID: 196

Figure2. Confidence vs. Time

