
Volume 2, No. 3, March 2011

Journal of GlobalJournal of GlobalJournal of GlobalJournal of Global Research in Computer Science Research in Computer Science Research in Computer Science Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2011, All Rights Reserved 27

 Fault Tolerance by Replication in Parallel Systems

Madhavi Vaidya

Affiliated to University of Mumbai,

India

vamadhavi03@yahoo.co.in

Abstract: In this paper the author has concentrated on architecture of a cluster computer and the working of them in context with parallel

paradigms. Author has a keen interest on guaranteeing the working of a node efficiently and the data on it should be available at any time to run

the task in parallel. The applications while running may face resource faults during execution. The application must dynamically do something to

prepare for, and recover from, the expected failure. Typically, checkpointing is used to minimize the loss of computation. Checkpointing is a

strategy purely local, but can be very costly. Most checkpointing techniques, however, require central storage for storing checkpoints. This

results in a bottleneck and severely limits the scalability of checkpointing, while also proving to be too expensive for dedicated checkpointing

networks and storage systems. The author has suggested the technique of replication implemented on it. Replication has been studied for parallel

databases in general. Author has worked on parallel execution of task on a node; if it fails then self protecting feature should be turned on. Self-

protecting in this context means that computer clusters should detect and handle failures automatically with the help of replication.

Keyword: Architecture, paradigms, data, dynamically, checkpointing techniques

INTRODUCTION

There is as such no simple recipe for designing parallel

algorithms. The design methodology allows the programmer

to focus on machine-independent issues such as concurrency

in the early stage of design process, and machine-specific

aspects of design are delayed until late in the design process.

The goal of parallel paradigm is decomposition of the

complete task into subtasks that are as independent as

possible. Distribution of the subtasks over the various

processors minimizes the total execution time. Finally, the

whole task gets executed in the faster manner. For clusters,

the distribution of the data is done over the nodes

minimizing the communication time. A cluster is a group of

independent servers that function as a single system.

As suggested by Ian Foster, this methodology organizes the

design process into four distinct stages [IF96]:

• Partitioning

• Communication

• Agglomeration

• Mapping

PARTITIONING

It refers to decomposing of the computational activities and

the data on which it operates into several small tasks. The

decomposition of the data associated with a problem is

known as domain/data decomposition.

COMMUNICATION

It focuses on the flow of information and coordination

among the tasks that are created during the partitioning

stage. The nature of the problem and the decomposition

method determine the communication pattern among these

cooperative tasks of a parallel program. These tasks are

executed on the clusters of workstations (cluster

computing), it is being used as they are cost effective and

scalable and they fulfill the need of high performance

computing.

AGGLOMERATION

If required, tasks are grouped into larger tasks to improve

performance or to reduce development costs. Also,

individual communications may be bundled into a super

communication.

MAPPING

It is concerned with assigning each task to a processor such

that it maximizes utilization of system resources (such as

CPU) while minimizing the communication costs.

In the world of parallel computing there are several authors

who have presented a paradigm classification. Not all of

them propose exactly the same one, but we can create a

superset of the paradigms detected in parallel applications.

[LS & RB]

For instance, in [DP], a theoretical classification of parallel

programs is presented and broken into three classes of

parallelism:

Madhavi Vaidya, Journal of Global Research in Computer Science, 2 (2) February 2011, 27-32

© JGRCS 2011, All Rights Reserved 28

• processor farms, which are based on replication of

independent jobs;

• Geometric decomposition, based on the

parallelization of data structures;

• Algorithmic parallelism, which results in the use of

data flow.

Another classification was presented in [PBH]. The author

studied several parallel applications and identified the

following set of paradigms:

• pipelining and ring-based applications;

• divide and conquer;

• master/slave; and

• Cellular automata applications, which are based on

data parallelism.

•

To summarize, the following paradigms are popularly used

in parallel programming: [LS & RB]

• Task-Farming (or Master/Slave)

• Single Program Multiple Data (SPMD)

• Data Pipelining

• Divide and Conquer

TASK-FARMING (OR MASTER/SLAVE)

The task-farming paradigm consists of two entities: master

and multiple slaves. See Fig.1 The master is responsible for

decomposing the problem into small tasks (and distributes

these tasks among a farm of slave processes), as well as for

gathering the partial results in order to produce the final

result of the computation. Master process acts as a co-

ordinator. One master process supervises the execution of

the program. It defines independent tasks and puts them in a

list which is observed by each cluster executing the tasks. It

also collects the results of these tasks.

The slave processes execute in a very simple cycle: get a

message with the task, process the task, and send the result

to the master. Any number of slave processes each takes a

task from the list, execute it, and put the result into the

master’s mailbox.

Usually, the communication takes place only between the

master and the slaves.

Figure.1

Advantages:

o Very simple model

o No deadlocks, since only the master process ever

waits for another process to finish

Limitations:

o Tasks cannot delegate work to sub-tasks. Adding

this possibility would introduce deadlocks.

o Rigid communication pattern, no optimization

possible.

o Distributed data storage impossible.

Task-farming may either use static load-balancing or

dynamic load-balancing. When the distribution of tasks is all

performed at the beginning of the computation, which

allows the master to participate in the computation after

each slave has been allocated a fraction of the work. Refer

Fig.2. The allocation of tasks can be done once or in a cyclic

manner; in this way the static load balancing works.

A dynamically load-balanced master/slave paradigm, in

which the number of tasks exceeds the number of available

processors, or when the number of tasks is unknown at the

start of the application, or when the execution times are not

predictable, An important feature of dynamic load-balancing

is the ability of the application to adapt itself to changing

conditions of the system.

�
Figure.2

�

Due to this characteristic, this paradigm can respond quite

well to the failure of some processors, which simplifies the

creation of robust applications that are capable of surviving

the loss of slaves or even the master. But the drawback is

serialization (process running should not clash with each

other) from master to the slave tasks. Processing and

network communication among them cause an important

hidden cost in this technique. The tasks list and result list

occupy memory in the master process.

SPMD(Single Processor Multiple Data)

Each process executes basically the same piece of code but

on a different part of the data. This involves the splitting of

application data among the available processors.

SPMD applications can be very efficient if the data is well

distributed by the processes and the system is homogeneous.

If the processes present different work-loads or capabilities,

then the paradigm requires the support of some load-

Madhavi Vaidya, Journal of Global Research in Computer Science, 2 (2) February 2011, 27-32

© JGRCS 2011, All Rights Reserved 29

balancing scheme able to adapt the data distribution layout

during run-time execution.

DIVIDE AND CONQUER

The divide and conquer approach is well known in

sequential algorithm development. A problem is divided up

into two or more subproblems. Each of these subproblems is

solved independently and their results are combined to give

the final result. In parallel divide and conquer, the

subproblems can be solved at the same time, given sufficient

parallelism. The splitting and recombining process also

makes use of some parallelism, but these operations require

some process communication. However, because the

subproblems are independent, no communication is

necessary between processes working on different

subproblems.

Data Pipelining

Processes are organized in a pipeline; each process

corresponds to a stage of the pipeline and is responsible for

a particular task. The communication pattern can be very

simple since the data flows between the adjacent stages of

the pipeline.

Parallel System’s - Node Breakdown

Increase in the number of components in such systems

increases the failure probability. To provide fault tolerance it

is essential to understand the nature of the faults that occur

in these systems. There are mainly two kinds of faults:

permanent and transient.

Permanent faults are caused by permanent damage to one or

more components and transient faults are caused by changes

in environmental conditions. Permanent faults can be

rectified by repair or replacement of components.

 Figure.3

The concept of a failure refers to a single node failing in an

actively processing application, other than a software error.

If there is a software error, then the bugs appearing in it can

only be repaired by recoding the application. The failures

can be defined as a breakdown in communications between

nodes. Observe Fig.3 To this end, to detect failures, all that

needs to be done, is for multiple machines to monitor each

other’s conditions.

Tasks may get finished for many reasons other than

communication breakdowns, that aren’t necessarily software

faults - such as running out of memory. It may be a node

failure problem. If a node fails, you could just repeat the

work elsewhere. If the process is been running for a longer

time this may result in a significant amount of lost work. In

this scenario, what can be done is a method can be applied

of saving the state of programs at certain intervals, so that in

the event of failure we could start from a more recent

position and minimize the loss of work. Here, the concept of

checkpointing is used.

CHECKPOINTING

Checkpointing can be done at various levels. Ex. Process

failing, logging all messages, node failure. One way of

checkpointing is to log all of the messages and interaction

between tasks. If a process fails, and needs to be resumed,

then resend the messages that it received from the log to get

it to the point in the program where it was before. If

messages are sent frequently, then this approach may be

sufficient and not lose much work. Another approach is to

use process level checkpointing, this type of checkpointing

works very well for single processes.

With a parallel system, the failure of one node may be

unrecoverable many a times, or at the very least it will take

and unacceptable length of time for the original machine to

resume. This leads to the requirement of process migration

as explained by the author[KO02]. A failed process (for

whatever reason) may need to be resumed on an alternative

node than the one it was previously working on. Assuming

all nodes are effectively similar, that is they are running on

homogeneous system, the checkpointing data of each node

needs to be available to the entire pool of processors. To

make available the checkpointing data , the data can be

stored either on each node (requiring huge duplication and a

heavy load on the network) or stored at a central location ,

we can say if task farming is used then at the master’s site.

The ability to migrate a process may be exceptionally useful

in this situation, as the process in hand can simply be moved

elsewhere. This principle can be extended to the task of load

balancing.

All the discussion we have done till now was with the

situation when the homogeneous nodes are in use. But what

if, the number of nodes used is heterogeneous.

HETEROGENEOUS CLUSTERS

Heterogeneous workstations clustered together, where each

workstation may have CPUs with different performance

capabilities and differing amounts of memory and caches,

and even different architectures and operating systems.

There is another type of heterogeneity. Even if all

workstations are identical, with identical CPUs, memory and

caches, they may not be 100% dedicated to the task for

which they are being used. Any or all of these processors

may be executing other applications that reduce the

performance capacity of the processor that is available for a

particular application.

Madhavi Vaidya, Journal of Global Research in Computer Science, 2 (2) February 2011, 27-32

© JGRCS 2011, All Rights Reserved 30

In addition the load on these processors may vary

dynamically over time as it is dependent on applications

running on the machine, which means the capacity dedicated

to a particular task may vary.

CHECKPOINTING ON HETEROGENEOUS

CLUSTERS

In the said paper, [KW] these two authors have discussed

the method of checkpointing on heterogeneous nodes as

,the goal of their checkpoint propagation approach is to

generate a variety of specific machine-dependent

checkpoints for heterogeneous systems. One straightforward

way they suggested would be to replicate processes on each

type of machine in the network. PREACHES, a

checkpointing tool for single process applications in

heterogeneous systems, has been successfully developed by

them using the checkpoint propagation technique. They used

the term “receiver makes right” mechanism is implemented

to reduce the overhead of data packing and unpacking. In

short, these authors have tried to concentrate on the fault

detection and recovery facility which can be done with the

support of portable checkpointing and process migration in

heterogeneous systems.

DISADVANTAGES OF CHECKPOINTING

A major issue of checkpointing is the degradation in

performance. Taking a checkpoint may require storing an

awful lot of data - this can take some time.Moreover, on a

parallel machine, a checkpoint is taken at the same stage

over the whole network; this often requires all processes to

be synchronized before the checkpoint.

If the number of processes get executed from heterogeneous

machines then it is more difficult. It may create degradation

on the performance of the clusters running in network.

If a node fails, the system cannot restart by remapping

checkpoints to existing nodes. Instead, a new node must be

inserted into the cluster to force the restart topology into

consistency with the original topology. This requires the

existence of spare nodes that can be allocated to the

computation to replace failed nodes.

Instead of checkpointing if the replication technique is used

in the scenario of a node failure then it helps to avoid the

faults generated in the system. It is explained in the below

listed benefits.

MY IDEA OF IMPLEMENTATION

The author has suggested the replication as a methodology

which can be used in the place of checkpointing. The

replication of data in a parallel distributed system offers the

benefits like the data can be copied on all clusters if needed

or the master copy is kept at Master node of all clusters and

then can be replicated or used wherever needed. This will

create a lot of duplication hence the replication technique by

using secondary failure is been explained here.

REPLICATION

Replication is used as a solution to fault generating systems.

Failure resilience is also difficult to achieve. If a site fails,

the data it contains becomes unavailable. By keeping several

copies of the data at different sites, single site failures

should not affect the overall availability which is the aim of

primary copy approach discussed under replication.

There are two types of replication techniques:

Synchronous and Asynchronous

Synchronous Replication: Synchronous replication

propagates any changes to the data immediately to all

existing copies.

Asynchronous Replication: Asynchronous replication first

executes the updating operation on the local copy. Then the

changes are propagated to all other copies. While the

propagation takes place, the copies are inconsistent

By implementing either of them, the author thinks that it

will be copies of the data maintained at each site and hence

will increase the wastage of the memory by keeping copies

of the similar data on many sites.

ADVANTAGES OF REPLICATION

Increased availability

One of the important advantages of replication is that it

tolerates failures in the network gracefully. The system

remains operational and available to the users despite

failures. By replicating critical data on servers with

independent failure modes, the probability that one copy of

the data will be accessible increases. Therefore alternate

copies of a replicated data can be used when the primary

copy is unavailable.

 Increased reliability

Many applications require extremely high reliability of their

data stored in files. Replication is very advantageous for

such applications because it allows the existence of multiple

copies of their files. Due to the presence of redundant

information in the system, recovery from catastrophic

failures becomes possible.

Improved response time

Replication also helps in improving response time because it

enables data to be accessed either locally or from a node to

which access time is lower than the primary copy access

time. The access time differential may arise either because

of network topology or because of uneven loading of nodes.

Reduced network traffic

If a file's replica is available with a file server that resides on

a client's node, the client's access requests can be serviced

locally, resulting in reduced network traffic.

Madhavi Vaidya, Journal of Global Research in Computer Science, 2 (2) February 2011, 27-32

© JGRCS 2011, All Rights Reserved 31

Improved system throughput

Replication also enables several client's requests for access

to the same file to be serviced in parallel by different

servers, resulting in improved system throughput.

Better scalability

As the number of users of a shared file grows, having all

access requests for the file serviced by a single file server

can result in poor performance due to overloading of the file

server. By replicating the file on multiple servers, the same

requests can now be serviced more efficiently by multiple

servers due to workload distributed. This results in better

scalability.

Autonomus operation

In a distributed parallel system that provides file replication

as a service to their clients, all files required a client for

operation during a limited time period may be replicated on

the file server residing at the client's node. This will

facilitate temporary autonomous operation of client

machines. A distributed system having this feature can

support detachable, portable machines.

• The load at the primary copy can be quite large

• Reading the local copy may not yield the most up

to date value

In the parallel and distributed systems research area

replication is mainly used to provide fault tolerance. Many

papers have discussed about the replication strategy used in

parallel as well as distributed databases. In the parallel

computation paradigm, the main tasks (process) when

executed on many nodes in a parallel manner, two

replication strategies have been used in distributed

systems: Active and Passive replication.

In Active Replication each client request is processed by all

the servers. All processes will be given the same initial state

and a request sequence, all processes will produce the same

response sequence and end up in the same final state. Either

all the nodes will receive a message or none, plus that they

all receive messages in the same order

In Passive replication there is only one server (called

primary) that processes client requests. After processing a

request, the primary server updates the state on the other

(backup) servers and sends back the response to the client. If

the primary server fails, one of the backup servers takes its

place.

The author has described the primary and secondary failure

techniques. The secondary failure technique resembles with

the passive replication where data is not copied

simultaneously on many machines. But if the failure of a

node occurs then the fault tolerance technique through self

protection mechanism of replication gets started.

Replication is used for performance and fault tolerant

purposes. By replication, the recovery procedure is executed

for failed replicas. [18P] Node failure handling is done by

using two techniques:-

• Secondary failure – this technique uses the

function as nothing to do till the (failed) node

recovers

��At recovery, apply the updates it

missed while the cluster was

down

��Needs to determine which

updates the specific cluster

missed, but this is no different

than log-based recovery

��If the node is down for too long,

may be faster to get a whole copy

• Primary failure – all other processes just wait

till it recovers

��Can get higher availability by

electing a new primary

��A secondary that detects

primary’s failure announces a

new election by broadcasting its

unique replica identifier

��Other secondaries reply with

their replica identifier

��The largest replica identifier wins

The author suggests that the Secondary Failure Technique

should be used for the problem of checkpointing which is

discussed in the paper.

Secondary Failure Technique will help the system to

overcome the failure problem of a node.

 If the Secondary Failure technique elects a new primary and

the old primary is still running, there will be a reconciliation

problem when they’re reunited. This is multi-master. There

is a type of settlement done in the original primary node and

the newly repaired one. Hence it is known as multi master.

CONCLUSION

Checkpointing is a very useful technique, which is, used

parallel computation for fault tolerance. Check pointing is a

way of taking a snapshot of tasks at any point of time, so

that in the event of failure, the task can be resumed from that

point. But it has also some drawbacks which author

discussed already. A major issue of checkpointing on a

parallel machine is the user has to take a checkpoint at the

same stage over the whole network, this often requires all

processes to be synchronized before the checkpoint.

Madhavi Vaidya, Journal of Global Research in Computer Science, 2 (2) February 2011, 27-32

© JGRCS 2011, All Rights Reserved 32

Hence author suggests the replication technique by

implementing the recovery procedure with the help of two

techniques Passive Replication and Secondary Failure. Out

of them, author felt the secondary failure technique more

useful from this issue’s point of view. Reason behind

selecting this secondary failure is, if some/one of the cluster

node goes down, its updates can be stored by replication’s

self-protect mechanism. How the log based recovery is

done, in the same manner the recovery from the failed node

is done and the tasks which would have been executed on

that specific node will be accomplished by other nodes

available in the link.

REFERENCE

[1] [IF96] I. Foster. Designing and Building Parallel

Programs. Addison Wesley, 1996, available at
http://www.mcs.anl.gov/dbpp

[2] [KO02] Fault Tolerant Parallel Programming

[3] [LS & RB] Parallel Programming Models and
Paradigms Luis Moura Silvay and Rajkumar Buyya

[4] [PBH] P. B. Hansen. Model Programs for
Computational Science: A Programming
Methodology for Multicomputers. Concurrency:
Practice and Experience, vol. 5 (5), pages 407-423,
1993.

[5] [DP] D. Pritchard. Mathematical Models of
Distributed Computation. In Proceedings of OUG-
7, Parallel Programming on Transputer Based
Machines, IOS Press, pages 25-36,

[6] [18P] research.microsoft.com/18_Philbe
Replication Standford99.ppt -- 1999 Philip A.
Bernstein

[7] [KW] PREACHES, Portable Recovery and
Checkpointing in Heterogeneous Systems

[8] Kuo-Feng Ssu W. Kent Fuchs

