

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2014

 10.15662/ijareeie.2014.0311026
Copyright to IJAREEIE www.ijareeie.com 13120

FPGA Implementation of ARM Processor

Mukesh P. Mahajan1, Pramod S. Aswale2 , Vivek D. Ugale 3

Assistant Professor, Dept. of ETC, SITRC, Nashik, Maharashtra, India1

Assistant Professor, Dept. of ETC, SITRC, Nashik, Maharashtra, India2

Assistant Professor, Dept. of ETC, SITRC, Nashik, Maharashtra, India3

ABSTRACT: Nowadays application specific soft processor cores are gaining importance for FPGA based embedded
application in which user can configure the processor as per requirement. The architectural simplicity of ARM
processors makes them suitable for low power applications. Hardware description languages (HDLs) are commonly
used to construct hardware system. FPGA provides reconfigurable platform, so reuse of the design is a common
practice to improve the productivity nowadays. In this paper the data processing instructions of ARM processor are
implemented using Very high speed integrated circuit Hardware Description Language (VHDL) language and verified
by applying test bench on Xilinx’s Spartan III based FPGA.

KEYWORDS: ARM, VHDL, FPGA, data processing instructions.

I.INTRODUCTION

The Arm processor has large uniform register file, load/store architecture, where data-processing operations only
operate on register contents, not directly on memory contents. Simple addressing modes, with all load/store addresses
being determined from register contents and instruction fields only Uniform and fixed-length instruction fields to
simplify instruction decode [5]. The ARM processor has been specifically designed to be small to reduce power
consumption and extend battery operation.The ARM architecture gives Control over both Arithmetic Logic Unit
(ALU) and shifter in every data-processing instruction to maximize the use of an ALU and a shifter Load and Store
multiple to maximize data throughput. These enhancements to a basic RISC architecture allow ARM processors to
achieve a good balance of high performance, small code size and low power consumption. [4] The FPGA based design
reduces time to market & adds design flexibility and adaptability with optimal device utilization and conserving both
less board space and system power, which is often not the possible in every case of ASIC chips. [3] In following this
line of thought, this paper summarizes our recent progress in developing VHDL soft-core of ARM processor on
Xilinx’s Spartan III based FPGA. An advantage of implementing a full-featured ARM processor soft-core on FPGA is
complete hardware customization while implementing various applications.

II. RELATED WORK

The hardware debugging technology is integrated in ARM processor so that programmers can view what is happening
during execution of code by processor. With this programmers can resolve issues very quickly and reduce time to
market and overall development cost. The ARM is not pure RISC architecture because of various limitations of
applications in embedded system. Nowadays Speed is not major constraint but power consumption and cost effective
solutions are also playing vital role [1] [2].
In [1] ARM soft processor core were implemented in the context of FPGA based multiprocessor based SOC
applications. All the 32-bit instructions were implemented with single cycle data path and random logic based
instruction decoder. The instructions of Data processing, Arithmetic, Branch instructions, Logical and compare were
implemented. The [2] proposed Virtual ARM Simulation Platform and discussed how it can be used to reduce design
time and cost.

III.SYSTEM MODEL AND ASSUMPTIONS

The ARM architecture has been designed to allow every small and high-performance implementation. The architectural
simplicity of ARM processors leads to very small implementations, and small implementations allow devices with very
low power consumption. The ARM is a reduced instruction Set Computer (RISC), as it incorporates typical RISC
architecture features. [5] The proposed architecture of the processor is shown in fig.1
The main components of the proposed architecture are-

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2014

 10.15662/ijareeie.2014.0311026
Copyright to IJAREEIE www.ijareeie.com 13121

1. Register file which contains 16 register of 32 bits.
2. Barrel shifter of capability to shift 32 bit right/left, arithmetic/logical.
3. Rotor having capability to rotate 8 bit data right/left.
4. Cocantation which convert 8 bit output of rotor into 32 bit.
5. Multiplexer which select one of two 32 bit inputs.
6. Arithmetic Logic Unit (ALU) to execute data processing instructions
7. Control Unit which control all blocks according to instruction.

Fig.1 Proposed ARM architecture

IV. DATA PROCESSING INSTRUCTIONS

The proposed work implements data processing instructions of the ARM processor. The data processing instruction is
only executed if the condition is true. The instruction format for data processing instruction is given below in fig.2.
The instruction produces a result by performing a specified arithmetic or logical operation on one or two operands. The
first operand is always a register (Rn). The second operand may be a shifted register (Rm) or a rotated 8 bit immediate
value (Imm) according to the value of the I bit in the instruction. The condition codes in the CPSR may be preserved or
updated as a result of this instruction, according to the value of the S bit in the instruction.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2014

 10.15662/ijareeie.2014.0311026
Copyright to IJAREEIE www.ijareeie.com 13122

Fig.2 Data instruction format

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used only to perform tests and to
set the condition codes on the result and always have the S bit set.
The proposed instruction set is shown in fig.3

Fig.3 Instruction set

 It contains instructions following operations.

• Arithmetic operations.
• Comparisons.
• Logical operations.
• Data movement between registers

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2014

 10.15662/ijareeie.2014.0311026
Copyright to IJAREEIE www.ijareeie.com 13123

These instructions only work on registers not on memory. They each perform a specific operation on one or two
operands. First operand is always a register Rn and second operand sent to the ALU via barrel shifter.

V. IMPLEMENTATION & RESULT
1. Register file

Fig.4 Entity of register file

It contains 16 register of 32 bits since we are using user mode, all register are accessible to user. The entity of register
file and its simulation result are shown in fig.4 and fig.5.

Fig.5 Simulation result of register file.

2. Barrel shifter

Fig.6 Entity representation of barrel shifter.

The barrel shifter has a 32-bit input to be shifted. This input is coming from the register file. The shifter has other
control inputs coming from control unit. Shift field in the instruction controls the operation of the barrel shifter. The
fig.6 shows the entity representation of barrel shifter.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2014

 10.15662/ijareeie.2014.0311026
Copyright to IJAREEIE www.ijareeie.com 13124

Fig.7 Simulation of Left arithmetic shift.

The simulation result of barrel shifter for arithmetic left shift operation is shown in above fig. Similarly simulation
results are achieved for right arithmetic shift

3. Rotor & Cocantation:

Fig.8 Entity of rotor.

The fig.8 shows entity of rotor. It is having capability to rotate 8 bit data right or left. The input is coming from
immediate data contain in immediate field of instruction through control unit. The output of rotor is 8 bits; it is
converted into 32 bit by Cocantation with null values

Fig.9 Simulation result of left rotation

The simulation result of rotor for left operation is shown in fig.9. The simulation results of Cocantation operation are
shown fig.10. The simulation results are also achieved for Right rotation.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2014

 10.15662/ijareeie.2014.0311026
Copyright to IJAREEIE www.ijareeie.com 13125

Fig.10 Simulation of Cocantation

4. Multiplexer

Fig.11 Entity of multiplexer

It selects one of two 32 bit inputs coming from barrel shifter and Cocantation output, gives result to ALU. The entity
representation of multiplexer is shown in fig. 11. It also performs to select data immediate from user or output of ALU
data Rd to store back in register file.

Fig.12 Simulation of multiplexer

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2014

 10.15662/ijareeie.2014.0311026
Copyright to IJAREEIE www.ijareeie.com 13126

6. Arithmetic Logic Unit (ALU)

Fig.13 Entity of ALU

The ALU has two 32-bits inputs. The first comes from the register file while the other comes from the shifter. ALU
output is stored at Rd location in the register file. The ALU has a 4-bit function bus that allows up to 16 Opcode to be
implemented. The different Opcode and their corresponding arithmetic and logic operations are performed on operands.
The fig.13 & fig.14.shows the entity and simulation result for arithmetic logic unit.

Fig.14 Simulation of ALU
7. Control Unit

Fig.15 Entity of control unit

The control unit fetches 32 bit instruction and provides control signals to the various the modules in the architecture.
The controller provide outputs multiplexer controls, ALU functions, register reads /writes, flags, shift field, rotate value

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2014

 10.15662/ijareeie.2014.0311026
Copyright to IJAREEIE www.ijareeie.com 13127

and other control signals to the hardware depending on the current instruction. The entity and simulation result is
shown in fig.15 & fig.16.

Fig.16 Simulation of control unit

All the results are taken using Xilinx’s ISE 8.1i tool. The target device selected for the implementation is 3s500ecp132-
5 from family Spartan III.

VI. CONCLUSION AND FUTURE SCOPE

The data processing instructions of ARM soft-core processor were synthesized, simulated and implemented on Spartan
III FPGA using Xilinx’s ISE tool. The code for all the modules were written using VHDL and tested by applying test
benches. All the modules are working satisfactory as per expectation. In terms of future work, there are many possible
areas to improve and do further development. So the ARM processor embedded into FPGA can be used for different
applications like DSP and Image processing. The design can be embedded into high end FPGA devices for better
performance. The reconfigurable ARM core can be used for verification platform in the industries.

REFERENCES

[1] Y B T Sundari, T. Surender Reddy, Dr. Laxminarayana G, “Implementing the ARM7 soft core processor in FPGA”, IJCER, vol.2, pp 153-159
Apr. 2013.

[2] Alex Heunhe Han, Young-Si Hwang, Young Ho An, So-Jin Lee, Ki-Seok Chung, “Virtual ARM Platform for Embedded System
Developers”, IEEE 2008 pp586-592

[3] J. O. Hamblen, T. S. Hall, “Using System-on Programmable-Chip Technology to Design Embedded System”, IJCA, Vol. 13, No. 3, pp 1-11,
Sept. 2006.

[4] Goslin, G. R. “A Guide to Using Field Programmable Gate Arrays (FPGAs) for application Specific Digital Signal Processing Performance”,
Xilinx Application Note, 1995.

[5] ARM Architecture Reference Manual.
[6] Nazeih Botros, “HDL Programming Fundamentals”, 2007.
[7] Volnei A. Pedroni, “Circiuit Design with VHDL”, 2004.

