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ABSTRACT
To decipher genetic information, molecular biology has

equipped new tools used in trials to improve and reconstruct the
evolution and taxonomy of organisms. The avail of molecular
methods, in Cyanobacteria, is to study the genotypic relations is a
foot. The practicality of macromolecular and chemotaxonomic
techniques is scrutinized and their usefulness is guesstimated.
The controversial taxonomic problems were solved by using
cyanobacterial phylogenetic scheme is based on 16Sr RNA
sequence analysis. The morphological features and simple testing
methods which are congruent with the genotypic groupings for
taxonomic purposes are essential. Genetic engineering has
proved to be an important tool in improving various metabolites in
Cyanobacteria. It has also contributed in the genetic breeding of
Cyanobacteria to obtain highly productive strains. The molecular
biology aspects can also be applied to engineer the Cyanobacteria
for enhancement in the area of biofuel production. For desirable
biotechnological applications of Cyanobacteria, the Genetic tools
are crucial.

INTRODUCTION
Cyanobacteria are the quintessential organisms annexed their energy from oxygenic photosynthesis for growth and

development. They have uniquely accommodated both a photosynthetic electron transport chain and a respiratory
electron transport chain within a single prokaryotic cell [1]. Cyanobacteria in addition are also capable of nitrogen fixation
[2-4] these oxygenic phototrophic organisms are often called the bioenergetic ‘nonplus –ultra’ among living beings. For
the growth and proliferation, they utilize, water, sunlight, atmospheric air and exiguous minerals for their needs. The
stable accommodation of a cyanobacterium into a non-photosynthetic eukaryote was a milestone in the evolution of all
other oxygenic photosynthetic organisms. During evolution, endosymbiosis, occurred once and complement the
chloroplast origin [5,6]. This is the basis dogma reason for the voluminous use of Cyanobacteria to cogitate the
photosynthesis fundamental processes and other photosynthetic complexes structures [7-11]. Cyanobacteria are chop-
chop growing prokaryotic organisms, which can facilely be genetically modified. Cyanobacterium Synechocystis sp. PCC
6803 genome sequencing [12], a model organism for the research into photosynthesis and related processes was
pondering work. This would not have been possible without the entry of techniques and genetic tools to aid mutational
experiments. For the analysis of various aspects of cyanobacterial physiology and development, colossal studies have
been made in developing genetic systems. Transformation, electroporation and conjugation systems sustain trenchant
gene transfer in disparate cyanobacterial strains. For the precocious studies of cyanobacterial photosynthesis, nitrogen
fixation, heterocyst development and metabolism, gene transfer, mingled with the bequest to clone and inactivate genes
in these unique and important prokaryotic microorganisms. Almost ten years ago the first conjugation system for
Cyanobacteria was described. There are numerous sophisticated gene transfer techniques were developed,
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cyanobacterial plasmids were isolated, vectors were constructed and the first cyanobacterial genes were cloned. For the
genetic analysis of Cyanobacteria, the constituents for assembly into powerful and sophisticated systems were ready by
the late 1980’s. Many excellent reviews over the last few years have depict the progression of many facet of genetic
systems in Cyanobacteria [13-18] and several articles have reviewed and described methodologies [19-25]. Extensive tables
compiled by [14,26,27] provide valuable information on strain designations, restriction endonucleases, and cyanobacterial
plasmids and cloning vectors. In addition, several laboratories are quest of biotechnological pertinence of Cyanobacteria
in terms of hydrogen or biofuel production [28-30] or exploitation of interesting pigments or bioactive compounds from
Cyanobacteria [31,32]. Transposons having reporter gene can concurrently subdue a gene and report expression of the
interrupted gene afford a powerful tool for the identification of environmentally regulated genes. The technique of pulsed-
field gel electrophoresis, combined with Southern hybridization analysis using cloned cyanobacterial genes and
transposon-tagged as probes, has allowed the construction of the first detailed maps of cyanobacterial chromosomes.
Since the available data concerning genetic manipulation systems for many other Cyanobacteria – unicellular as well as
filamentous strains- are huge, this review concentrates on the current state of art and on potential applications.

Photosynthetic Microorganisms

Photosynthetic microorganisms are able to produce a multifarious pattern of renewable biochemical products.
Cyanobacteria and some microalgae are considered as photosynthetic, auspicious pothunters for many implied
applications includes biomass (food supplements and aquaculture feed), environmental applications (biofuels, waste
water treatment, CO2 mollification), high value products production (pigments, polyunsaturated fatty acids, vitamins)
[33-37]. These photosynthetic microorganisms boost the need for steadfast, efficious and economical processes with
constant quality products. Cyanobacteria, being photosynthetic organisms, use the sun’s energy, H2O and CO2 to
synthesize their energy storage compounds i.e. carbohydrates, lipids and proteins. These energy storage components
from a potential feedstock which can be converted into bioenergy. The main precursors of Cyanobacteria are only
sunlight, carbon dioxide, water and minimal nutrients for growth, eliminating the cost of carbon sources and complex
growth media. Sunlight is the most without demur available and dirt-cheap resource on earth and the use of
cyanobacteria for the production of profitable products and biofuels from solar energy offers a verduous path for the
synthesis process. Cyanobacteria decked with photosynthetic capabilities, have higher photosynthesis and biomass
production rates compared to plants, convert upto 3-9% of the solar energy into biomass to collate ≤ 0.25-3% achieved
by crops for instance corn, sugarcane [38]. As the need of cyanobacteria increases, continous production systems are
attracting interest, according to many authors these systems are the most achievable and successful for the large scale
production of the photosynthetic microbes mainly due to decrease of labour costs, lower investments, operational costs
and decrease of unprofitable periods [39-45]. Cyanobacteria are ancient autotrophs, responsible for increasing the levels
of oxygen and CO2 mitigation in Earth’s atmosphere as they share many similarities with the higher plants and green
algae chloroplasts but differs in biosynthetically [46-50]. Cyanobacteria store glycogen instead of starch [51-53] under
stress conditions they accumulate polyhydroxybutyrate from acetyl COA [54]. The interest of bioenergy from Cyanobacteria
is gaining popularity in research communities focused on photosynthesis, genetic engineering of growth systems and
metabolic pathways [55-62]. An avant-garde cyanobacterial cultivation systems has been developed for scaling up
practices as well as strain characterization [54]. Cyanobacteria include unicellular and filamentous forms and vary from
spherical, oval, fusiform, rod –like to irregular in shape [63]. Cell size ranges from 0.5 µm to 60 µm. They are Gram
negative has a peptidoglycan cell wall and sandwiched between cytoplasmic and outer membranes [64]. Cyanobacteria, a
prokaryote do not have nuclear envelope or a true nucleus, but rather have a nucleoid. The cytoplasm contains the
photosynthetic apparatus, called thylakoids, which contains the phycobilisomes [65]. Cyanobacteria are the only members
of the domain Bacteria with the ability of oxygenic phototsynthesis. They possess photosynthetic apparatus with two
photosystems (PSI and PSII) each with a unique reaction centre (RC) and chlorophyll a (Chl a) and phycobilisomes, which
consists of phycobilins covalently bound to phycobili proteins as peculiar light harvesting systems. In contrast to
Cyanobacteria many prochlorphytes contain Chl a and Chl b and lack phycobilins [66,67] and the Cyanobacterium
Acayocholris marina harvests far-red light with Chl d for photosynthesis underneath minute coral reef invertebrates [68].
Nitrogen fixation was carried out by most of Cyanobacteria [69]. Many filamentous but some unicellular Cyanobacteria
move by gliding motility directed by light i.e. phototaxis [70-73]. Cyanobacteria are monophyletic but morphologically and
physiologically diverse. They were one of the earliest organisms on this planet and they played a key role in the formation
of atmospheric oxygen [74,75]. The early occurrence of Cyanobacteria on the Earth has been concluded from molecular-
phylogenetic analysis [67,76-78] studies on the rise of atmospheric oxygen [79] and micro-paleontological investigations
[80-82]. Recent research fields indicate that the oxygenic photosynthesis by Cyanobacteria originated about 2,340 million
years before present (Ma). Assumably, anoxygenic photosynthesis with one photosystem was a precurssor of oxygenic
photosynthesis with two photosystems. The three major lineages of bacteria (actinobacteria, Deinococcus and
Cyanobacteria) contributed to an early colonization of land [83]. The geological and geochemical data analysis showed
that the Cyanobacteria or their ancestors originated in the Archean eon, approximately 2,700 Ma. The increase in the
oxygen level after the beginning of oxidative photosynthesis remained very low, about 10-5 of the present atmospheric
level for about 400 million years [84]. (Figure 1).
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Figure 1: Physiology of Cyanobacteria

Need for Gene Transfer

Cyanobacteria possess genes responsible for the production of bio hydrogen, which is a forethought as an alternate
source of energy [85]. Subsistence of their facile, autotrophic growth requirements, Cyanobacteria are promising
organisms for bio-fuel production (ethanol) by genetic engineering to scale down the dependency on the depleting fossil
fuel reserves [62]. They are also helpful for controlling mosquito borne diseases by expressing insecticidal cry proteins
from Bacillus thuriengenesis ssp. israelensis (Bti) [86]. In order to get the overall triumphant benefits from cyanobacteria
in an eco-friendly manner, receptiveness of genetic manipulation to strains is necessary which involves the transfer of
genes in a living cell (transformation) both chromosomal and plasmid transformation are possible with Cyanobacteria
[87]. Rapidly growing demand and development of bio energy from Cyanobacteria and the profitable production of
cosmetics and pharmaceuticals from cyanobacterial natural products, the genetic engineering of Cyanobacteria has
been magnetizing to boost up the attention to overcome the biomass problems in industrial applications [88] to modify
the metabolic pathway for high value products [89], to architect the bio-bricks for artificial photoautotroph in the promising
field of synthetic biology [90,91].

Advantages of Genetically Engineered Microorganisms

During nitrogen deprivation, a glycogen-deficient mutant, Synechocystis 6803 (ADP- glucose pyrophosphorylase knock
out) secreates pyruvate and α- ketoglutarate. These sugars and organic acids are converted into alcohols for biofuels
[92,93]. Sucrose, glucose, fructose, glycosyl- glycerate and lactate export from transgenic Cyanobacteria has also been
achieved [94-97]. Controlled parameters ranging from light and nutrient availability to salinity, temperature and pH can be
used to find maximal productivity, suspend the cells at a particular doubling rate or determine the limits of cell viability
under stress among many other applications [98-100]. The heterologous expression of a plant TPS in a photosynthetic
microbe was described in Synechocystis sp. PCC 6803 upon transformation with the Pueraria montana isoprene
synthetase gene [101]. Isoprene (C5H8), a volatile hemiterpene product was synthesized at a rate of 4 µg isoprene L-1h-1

[102] similar results were seen in Synechocystis successfully transformed with the β- caryophyllene synthase from
Aretemisia annua [103] and the β-phellandrene synthase from Lavandular angustfolia [104] permitting accumulation of the
sesquiterpene β- caryophyllene and the monoterpene β- phellandrene. All three TPSs were cloned into the Synechocystis
genome at the psbA2 locus via double homologous recombination, with expression in a light dependent manner [101]. In
recent years, the expression of genes in Synechococcus sp. strain PCC 7942 was achieved the human carbonic
anhydrase gene caII used to investigate CO2 concentrating mechanisms [105] E.coli and human superoxide dismutase
genes used to investigate oxidative stress [106,107], E.coli pet genes used to increase salt stress resistance [108] and
Bacillus thureingenesis larvicidal genes used to develop bioinsecticidal hosts [109,110] are expressed in Synechococcus
sp. at high levels to produce palpable phenotypes. The genes pdc and adh from Zymomonas mobilis were cloned into
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shuttle vector and transformed into Synechococcus sp. strain PCC 7942, a significant amount of ethanol was
accumulated in the culture medium [111]. Ethanol production from Cyanobacteria have been significantly increased
[112,113]. Many enzymes have displayed lowered activity when transferred into Cyanobacteria results in limited production
[114,115]. To mitigate the problems of greenhouse gases, renewable strategies for algal recycling of nitrogen have been
proposed [116]. The possibilities for engineering the atmospheric nitrogen fixing cyanobacterial strains as production
systems to be scrutinized (Table 1) [117,118].

Table 1: Bioproducts produced form Cyanobacteria

S.No Name of the Cyanobacteria Product References

1 Synechocystis sp. PCC 6803 Ethanol production by introducing pdc
&adh genes from Zymomonas mobilis

[202]

2 Synechococcus elongatus PCC 7942 Isobutyraldehyde & Isobutanol [203]

3 Anabena, Aphanocapsa, Calothrix, Microcystis,
Nostoc and Oscillatoria

Biohydrogen [204-206]

4 Synechocystis sp. PCC 7002 Hydrogen [207]

5 S. elongatus PCC 7942 Hydrogen [205]

6 Synechococcus sp. PCC 7002 Alkane production [208]

7 Synechocystis sp. Fatty acids and alkane [209]

8 Synechococcus sp. NKBG 150 41c Alkanes and α-olefins [210]

9 Spirulina VitaminB12, β-Carotene, Thiamine and
Riboflavin

[211]

10 Synechocystis sp. PCC 6803 Isoprene production [212]

11 Aphanotheca sp. Polyhydroxyalkanoate(PHA) [213]

12 Oscillatoria limosa PHA [214]

13 Spirulina sp PHA [215]

14 Synechocystis sp. PCC 6803 PHA [216]

15 Synechocystis sp. PCC 6803 PHA [217]

16 Synechocystis sp. PCC 6803 (S)-and(R) -3-hydroxy butyrate [218]

17 S. elongatus sp. PCC 6301 Isobutanol [219]

18 Synechocystis sp. PCC 6803 PHA [220]

19 Synechococcus sp. Glutamate [221]

20 Nostoc, Arthospira, Aphanizomenon Food [222]

21 Synechocystis sp. PCC 6803 Isoprene [223]

22 Synechococcus elongatus Glucose, Fructose mixture and lactic acid [224]

23 Symploca sp. Bioactive compounds Dolastatin 10 [225]

24 Synechococcus elongatus Production of 2.3-butanediol [226]

25 Synechococcus sp. PCC 6308 Extracellular slime by transformation [227]

Vectors

Many common cloning vectors based on pBR322 i.e., the pUC series of vectors beyond pUC7 and p-Bluescript) have
lost the oriT (bom) site and cannot be used for conjugation; however, plasmids with a variety of useful features for
conjugation to Anabena sp. and other cyanobacteria have been created [87,119,120,121]. There is no evidence that most
E.coli replicons function in cyanobacteria . It appears, however, that IncQ plasmids (pKT210 or pKT230) [122] can transfer
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to and replicate in some cyanobacteria after mobilization by the broad–host-range conjugal plasmid, RP4 [123-125]. A
mobilizable plasmid based on pBR325 that contains the oriT from an IncP plasmid has been divulged to transfer to and
replicate in Plectonema boryanum strain UTEX 594 (Table 4) [126].

Expression Vectors and Shuttle Vectors

The first cyanobacterial expression vector, pFC1, based on λ regulatory signals, which provide temperature-controlled
gene expression in S.7942 [127] or S.6803 [128] and on the conjugative plasmid RSF1010 [129], which facilitates
autonomous replication in Synechocystis sp. strains PCC6803 and PCC6714 or Synechococcus sp. strains PCC7942 and
PCC6301 [130]. A powerful substitute vector pMB13 for pFC1, produce proteolytically instable proteins. These vectors are
used in in vivo studies of Cyanobacteria [131]. The replicating shuttle vectors include two replicons: one that allows
replication of the plasmid in E. coli and one that allows replication in the host strain. These vectors have been
constructed by cloning into a mobilizable E. coli plasmid i.e., a plasmid with oriTsite, a segment of a cyanobacterial
plasmid that includes the genes required for replication. A variety of shuttle vectors for transformation have been
constructed using plasmids from unicellular Cyanobacteria. These plasmids typically lack oriT and thus cannot be
mobilized [16,20] however mobilizable shuttle vectors that replicate in several unicellular or filamentous Cyanobacteria are
available [16,20,119,132-134]. Vectors that include the replication origin from pDU1, a plasmid from Nostoc sp. strain PCC
7524 [135-137] allow autonomous replication in several strains of Cyanobacteria [87,119,138,139].

Reporter Genes and Marker Genes

The stability of the transformed foreign gene, the efficiency of expression and frequency of transformation was
confined by reporter gene. It is also used to determine the expressed protein and its locality in the transformed cells. GUS
and lacZ are the extensively used reporter genes in marine algal transformation. The reporter marker genes subsuming
chromogenic, fluorogenic and bioluminescence markers. GUS (β-glucuronidase gene from E.coli) system, which produces
a fluorogenic product that can be detected at very low level. The reporter gene lacZ and luc expressed in A. cylindrica and
Synechocystis sp. Cyanobacterial colonies carrying lacZ gene produce blue colour i.e, well differentiated from wild type
green colour colonies. These E. coli promoters are well recognized by A. cylindrica and Synechocystis sp. [140]. Effective
selection marker genes are important to contradistinguish the successful transformants from transformed cells. The
selectable markers include two types, the genes conferring antibiotics of higher plants are commonly used in selection of
marine algal transformants. The other type is homologous complementation of metabolic mutants, used for chloroplasts
transformations. The lists of selectable markers in microalgal were compiled in past reviews [141-143]. The efforts have to
be made for alternate markers and standardize marker free selection as there is shooting match in the biosafety [144].

Modes of Gene Transfer Technologies

Conjugation

Conjugation, which is DNA transfer mediated by cell-to-cell contact, is based upon the mobilization of DNA from one
bacterium to another bacterium by a broad-host-range conjugative plasmid. Conjugation has been the method of choice
for gene transfer in filamentous Cyanobacteria, but is also useful for unicellular Cyanobacteria [119,123,125]. The
methodology, first described [119] and has been extensively reviewed [19-20,145]. Three plasmids are consistently
concerned in conjugative transfer of DNA to Cyanobacteria. The plasmid to be transferred to the cyanobacterial host
(cargoplasmid) must have a site called bom or oriT, that is nicked by an enzyme (the mob product) prior to transfer. The
nicking enzyme is usually produced in trans by a second helper plasmid in the same donor cell.

The nicked strand is mobilized from the donor cell to recipient cell via transfer (tra) gene products provided by a third,
mobilizing plasmid may be maintained in the same donor cell as the other two plasmids or it can be transferred to from a
separate E.coli cell to cell containing the cargo and helper plasmids during conjugation. Maintenance of multiple
plasmids in one strain requires that the plasmids be compatible i.e., that they have different replicons. In triparental
matings, the conjugative plasmid is in one E. coli strain, the cargo and the helper plasmids are in a second strain and the
third partner is the recipient cyanobacterial cell. The donor DNA is probably transferred as single-stranded DNA; a new
strand is synthesized immediately by the host cell, probably during transfer. The transferred plasmid can re-circularize
and replicate if the plasmid has a replicon that functions in the recipient cell. The transferred DNA may also recombine
with homologous DNA in either the chromosome or in another plasmid in the recipient cell. Although transformation was
also utilized for manipulation of filamentous strains, nowadays conjugation is the prevailing method to manipulation of
Cyanobacteria genetically [119,146,147]. In addition, conjugation is commonly used for genetic manipulation of unicellular
Cyanobacteria (Figure 2) [148,149].
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Figure 2: Conjugation in Cyanobacteria

Transformation

Transformation, which is the transfer of free DNA into cells, was first described for Synechococcus sp. strain PCC 7943
[150]. Many years ago and remains today the primary means for gene transfer in unicellular Cyanobacteria.
Transformation has been thoroughly summarized [15,151] and the methodology has also been described well [152,153]. In
addition to the original transformable strain, two close relatives, Synechococcus sp. strain PCC6301 [154] and
Synechococcus sp. strain PCC 7942 [155], are also transformable. These three strains are genetically very kin [156-157];
however transformation has been studied in more detail in Synechococcus sp. strain PCC 7942 because it is highly
transformable [154]. The bacterium Synechococcus sp. PCC 6803 has become a very attractive model organism since the
publication of its genome sequence by [158]. This was the first complete genome sequence of photosynthetic organism
thus raising not only cyanobacterial genetics and physiology to a higher level but also phototsynthesis research. As
Synechocystis sp. PCC 6803 is able to grow mixotrophically on glucose with impaired photosystems I and II, several
laboratories started to use this organism for the study of phototsynthesis in the eighties of the last century [159-162].

The mechanism of transformation in Cyanobacteria is below par understood; however most of these unicellular strains
are naturally competent and the mechanism may claim some pecularity with other transformable bacteria [151]. One
strain in which transformation can be induced is Synechocystis sp. strain PCC 6308, which requires CaCl2 treatment for
competency. The ability of heterologous DNA to compete with homologous DNA for uptake in Synechococcus sp. strain
PCC 7942 [154] and in Synechococcus sp. strain PCC 7002 [163] may imply a mechanism similar to that of transformable
Gram positive heterotrophic bacteria. Cyanobacteria pop in to be competent during all phases of growth [150,164,165]

however, cells are usually transformed during mid-to-late-exponential growth [151]. Transformation is dependent on DNA
concentration; it shows single–hit kinetics, with full saturation at concentration as low as 1.0 µg.ml-1 in Synechococcus
sp. strain PCC 7002 and as high as 50 µg.ml-1 in Synechocystis sp. strain PCC 6803 [151,164,165]. While transformation
frequencies are variable between experiments in the same strain, typical values are 103-105 µg-1 of DNA [151]. Clear
indications for a functional link between Tfp and natural competence this term refers to the ability of bacteria to take up
extracellular DNA-were first provided by [166] and later by [167]. Many bacteria exhibiting Tfp indeed are naturally
transformable [168] and this competence is often dependent on intact piliation, where upon in some cases, Tfp assembly
factors rather than the pili structures itself are required for transformation [169]. For naturally transformable bacteria that
exhibit Tfp on their surfaces, the presence of these appendages appears to be connected with competence [166,170-172].
Yoshihara et al.[172] suggested a fundamental role of type IV pili in the natural competence of unicellular Cyanobacteria.
The gene product of pilB1 exhibits NTPase activity and is regarded as a pilus extension motor that is indispensible for
pilus assembly (Figure 3) [173,174].
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Figure 3: Transformation of Cyanobacteria

Electroporation

Electroporation has also been used to transform several Cyanobacteria, Microcystis aeruginosa, Thermosynechoccus
elongatus BP-1 or filamentous Cyanobacteria [175,176]. Electroporation has been used to introduce DNA into animal cells,
plant cells and many bacteria including several Cyanobacteria. Optimum conditions for electroporation of a replicating
plasmid in Anabena nidulans sp. strain M-131 were field strength of 8 Kv cm-1 and a time constant of 5 ms-1 [175]. As is
true for conjugation, restriction of DNA is a significant problem; a single unmodified AvaII site reduces transformation
efficiency about 100-fold [175].

Electroporation has some advantages over conjugation: E. coli cells do not contaminate the transformants; vectors
lacking a bom site may serve as donors; and electroporation requires only DNA and washed host cells. The ability to
methylate the donor DNA in vitro, to produce linear plasmids for transfer (yielding exclusively double recombinants after
integration into the chromosome) and to use chromosomal DNA as the donor are potential advantages of electroporation
that have not yet been explored (Figure 4).
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Figure 4: Electroporation of Cyanobacteria

Applications of Genetic Engineering

The genetic engineering offers the forecast asset and permits the introduction of numerous divergent desirable genes
at a single event and rebate the time. The first report of transgenic plants [177] has been accelerated and used for
practical ends of crop improvement. The plant genetic engineering practices involve mainly two important technologies
cellular and molecular biology. Bacillus thureingenesis engross world’s leading position as biopesticide, accounting for
ca. 90% of biopesticide sales [178]. Gene encoding in sweet potato, trypsin inhibitor in transgenic tobacco results in
severe growth retardation of Spodoptera litura caterpillars fed on it [179]. The osmolytes like mannitol fructans, proline,
trehelose, ononitol production by genetic engineering increase resistance to drought but the mechanism of these
osmolytes in protection yet to be discovered [180] . In transgenic tobacco plants the tolerance of salt stress and drought,
due to over express of inositol methyl transferase gene (IMT1) from ice plant (Mesembryanthemum crystallinum)
increased by the accumulation of methylated form of inositol, D-ononitol [181]. Mannitol, a photosynthetic product of
higher plants and many algae aggrandize the tolerance to water-deficiency mainly through osmotic adjustments [182].
Mannitol dehydrogenase (mtlD) was introduced into wheat results in the increment of water stress tolerance [183]. The
genes AtGolS1and AtGolS2 shows tolerance to drought resistance due to accumulation of galactinol and raffinose, which
are osmoprotectants in Arabidopsis plants [184]. Bacterial fructan gene was engineered in sugar beet and tobacco plants
showed drought stress tolerance [185,186]. Many crops were genetically modified, implicates insect resistance, plant
pathogen and herbicide resistance and also for slow ripening, seedless fruits and increased sweetness (Table 3) [187].
Soybean, potato, cotton, corn and canola occupies largest area of engineered crops [188,189]. The genes Adh and Pdc
introduced into hairy roots of Arabidopsis thaliana to improve the low oxygen conditions [190]. The production of fatty
alcohols in genetically engineered E.coli by fatty acyl Co-A reductases from Jojoba [191], mouse [192], Arabidopsis thaliana
[193]. By using metabiloc engineering E. coli strains produce 1.6 mg zeaxanthin/g dry weight [194]. Many antibiotic
resistant genes are successfully used for microalgae transformant selection, includes chloramphenicol [195], hygromycin
[196], spectinomycin [197,198], streptomycin [198], paromomycin [199,200]. The biotechnological importance of Spirogyra,
produces bioactive substances (Table 2).

Table 2: Different activities produced by Cyanobacteria

S.No Name of the cyanobacteria Activity References

1 Synechococcus Antibiotic resistance Ampicillin [228]

2 Weistiellopsis prolific ARM 365, Hapalosiphon-
hibernicus ARM 178, Nostoc muscorum ARM 221,
Fischerella sp. ARM 354 & Scytonema sp.

Antibacterial activity against P.striata,
B.subtilis, E.coli & Bradyrhizobium sp.

[229]
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3 Anabena sp. Antibacterial activity against S.aureus,
E.coli, P.aureginosa, S.typhi & K. pneumonia

[230]

4 Nostoc commune Antibacterial activity (by Noscomin,
diterpenoid compound) against B. Cereus,
S.epidermidis & E.coli

[231]

5 N. commune

N. insulare

Nodularia harveyana

Antifungal activity (by nostofungicide)
against Aspergillus candidus (norhormane
4,4’- dihydroxy biphenyl) against Candida
albicans

[232,233]

6 Nostoc ellipsosporum

Scytonema varium

Scytonema sp.

Anti-viral activity (Cyanovirin-N. ScytovirinN,
Sulfoglycolipid against HIV)

[234-236]

7 A. quadruplicatum PR-6 Insecticidal [237]

8 Spirulina maxima Thrives under alkaline (pH~ 11) & high
salinity (1.2M Na2CO3)

[238]

9 Arthospira Skin care [239]

10 S. elongatus Ability to grow in absence of light [240]

11 Synechocystis sp. PCC 6803 Tolerance to butanol [241]

12 Synechocystis sp. PCC 6803 Tolerance to butanol [242]

13 Synechococcus sp. NKBG 042902 Promote plant germination by
transformation

[243]

14 Synechococcus sp. PCC 7002 Natural transformation [244]

15 Synechococcus sp. NKBG042902 YG 1116 First marine unicellular cyanobacterium
transformed by electroporation

[243]

Table 3: Biodegradation, remediation and absorption activity of Cyanobacteria

S.No Name of the cyanobacteria Degradation activity References

1 Synechocystis sp. PUPCCC64, Westiellopsis
prolific, Nostoc hatei, Anabena sphaerica

Degrade organophosphorus, organo
chlorine insecticides in aquactic
environments

[244-246]

2 Anabena doliolum Removes copper & iron [247]

3 Oscillatoria, Synechocystis, Pleurocapsa Degradation of petroleum compounds [248]

4 Synechococcus sp. CO2 removal [249]

5 Oscillatoria sp. UV absorption [250]

6 nidulans Removal of outer membrane by lysozyme
treatment

[251]
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