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ABSTRACT: This paper deals with functioning and application of graphics processing units to general purpose 
computing and the high performance capability of a Graphics Processing Unit(GPU) using CUDA(Compute Unified 
Device Architecture ) to do parallel computing. GPGPU which stands for General-purpose computing on Graphics 
Processing Units is the technique in which the GPU is employed to handle and perform computations that were 
previously handled only by the CPU. Parallel computing is a form of computation in which many calculations are 
carried out simultaneously, operating on the principle that large problems can often be divided into smaller ones, which 
are then solved concurrently. There are many advantages in doing so, primary amongst which is speed, but 
unfortunately, getting the GPU to handle tasks traditionally performed by the CPU isn’t quite so simple .CUDA was 
developed by NVIDIA to execute simple programs using GPGPU which were executed on CPU. The logic behind the 
idea is that GPU consists of multi core processing units which operate in parallel and can be used to execute multiple 
instructions concurrently. CUDA gives program developers direct access to the virtual instruction set and memory of 
parallel computation elements in CUDA GPU’s. 
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1. INTRODUCTION 

 
[1] In recent years the application of graphics processing units to general purpose computing has become widely 

developed. Parallel programming is becoming one of the hottest topics in software today as multi-core CPUs decrease 
in price and increase in power. Parallelism in programs allows multiple processes to be executed concurrently using 
separate threads and processing units. This is appealing to developers and users alike, because it can help reduce 
runtimes while still producing the same results as if it were run in serial. 

To give an example, let’s say we have an array(Fig 1.1.) that contains thousands of integer elements and each value 
needs to be processed through a lengthy algorithm. Instead of running each value through the algorithm consecutively 

(i.e. one at a time), parallelism allows multiple values to be processed simultaneously (i.e. running many values through 
the algorithm at the same time), reducing overall processing time and producing fast and accurate 

 
Fig 1.1 results 

The aim of this paper is to greatly reduce the high computing time of the CPU. GPUs are characterized by numerous 
simple yet energy-efficient computational cores, thousands of simultaneously active fine-grained threads, and large off 
chip memory bandwidth. While CPU is made of multiple cores, GPU is made of thousands of cores. CPU + GPU is a 
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powerful combination because CPUs consist of a few cores optimized for serial processing, while GPUs consist of 
thousands of smaller, more efficient cores designed for parallel performance.(Fig 1.2) Serial portions of the code run on 
the CPU while parallel portions run on the GPU.  

 
Fig 1.2 

The rest of this paper is organized as follows. Section 2 reviews the comparison between CPU and GPU. Section 3 tells 
about the flow of process in CUDA. Section 4 deals with working on CUDA. Applications using GPU are listed in 
Section 5. Finally, Section 6 concludes and raises present scenario of GPU. 

 
II. COMPARISON BETWEEN CPU AND GPU 

 
The difference between CPUs and GPUs is that GPUs are highly specialized in number crunching, something that 
graphics processing desperately needs as it involves millions, if not billions, of calculations per second. The amount of 
cores that GPUs have depends on the manufacturer. NVidia graphics solutions tend to pack more power into fewer 
chips, while AMD solutions pack in more cores to increase processing power. Typical high-end graphics cards have 68 
cores if it’s nVidia, and ~1500 cores if it’s AMD. Architecturally, the CPU is composed of a only few cores with lots of 
cache memory that can handle a few software threads at a time. In contrast, a GPU is composed of hundreds of cores 
that can handle thousands of threads simultaneously. The ability of a GPU with 100+ cores to process thousands of 
threads can accelerate some software by 100x over a CPU alone (Fig 2.1). What’s more, the GPU achieves this 
acceleration while being more power- and cost-efficient than a CPU.   

 
 

Fig 2.1 
GPU devotes much more transistors to data processing rather than data caching and flow control. 

III.FLOW OF PROCESS IN CUDA 
 

[1] CUDA is an extension to C based on a few easily-learned abstractions for parallel programming and a few 
corresponding additions to C syntax. CUDA represents the coprocessor as a device that can run a large number of 
threads. The threads are managed by representing parallel tasks as kernels mapped over a domain. Data is prepared for 
processing on the GPU by copying it to the graphics board's memory. Data transfer is performed using DMA and can 
take place concurrently with kernel processing. CUDA gives program developers direct access to the virtual instruction 
set and memory of the parallel computational elements in CUDA GPUs. 
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3.1 Data transfer from main memory to device memory. 
 

Consider Fig 3.1.The input data for parallel proceesing are got from the user using CPU. Memory is allocated for 
the data in both CPU and GPU. After getting all data, the data is copies from the main memory(CPU) to the device 
memory(GPU).The CPU instructs the GPU for parallel processing [2]. 

 

 

 

 
   

FIG 3.1 
 

1. Copy data from main mem to GPU mem 
2. CPU instructs the process to GPU 
3. GPU execute parallel in each core 
4. Copy the result from GPU mem to main mem 

 
3.2 Data Transfer between Host and Device 
 

The bandwidth between device memory and the device is much higher than the bandwidth between device memory 
and host memory. Therefore, one should strive to minimize data transfer between the host and the device, for example, 
by moving more code from the host to the device(Fig 3.2), even if that means running kernels with low parallelism 
computations. Intermediate data structures may be created in device memory, operated on by the device, and destroyed 
without ever being mapped by the host or copied to host memory. Also, because of the overhead associated with each 
transfer, batching many small transfers into a big one always performs much better than making each transfer 
separately. Finally, higher performance for data transfers between host and device is achieved by using page-locked 
host memory. In addition, when using mapped page-locked memory there is no need to allocate any device memory 
and to explicitly copy data between device and host memory. Data transfers are implicitly performed each time the 
kernel accesses the mapped memory. For maximum performance, these memory accesses must be coalesced like if they 
were accesses to global memory. Assuming that they are and that the mapped memory is read or written only once, 
using mapped page-locked memory instead of explicit copies between device and host memory can be a win 
performance-wise. On integrated systems where device memory and host memory are physically the same, any copy 
between host and device memory is superfluous and mapped page locked memory should be used instead.  
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Fig 3.2 

 
IV. WORKING ON CUDA 

 
[1] Nvidia CUDA Programming Basics consists of The Programming model, The Memory model and CUDA API 

basics. In the CUDA Programming Model the GPU is seen as a compute device to execute a portion of an application, 
a function for example, that has to be executed many times, can be isolated as a function, works independently on 
different data. Such a function can be compiled to run on the device. The resulting program is called a Kernel.(Fig 4.1). 
The batch of threads that executes a kernel is organized as a grid of thread blocks. In the Memory model each CUDA 
device has several memories that can be used by programmers to achieve high Computation to Global Memory Access 
(CGMA) ratio and thus high execution speed in their kernels. Variables that reside in registers and shared memories 
can be accessed at very high speed in a highly parallel manner. Registers are allocated to individual threads; each 
thread can only access its own registers. A kernel function typically uses registers to hold frequently accessed variables 
that are private to each thread. Shared memories are allocated to thread blocks; 

 

Fig 4.1 

each thread can only access its own registers. A kernel function typically uses registers to hold frequently accessed 
variables that are private to each thread. Shared memories are allocated to thread blocks; all threads in a block can 



 
                      ISSN(Online):2320-9801 

        ISSN(Print):  2320- 9798 
 

International Journal of Innovative Research in Computer 
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 2, Special Issue 3,  July 2014 

Copyright to IJIRCCE                                                                       www.ijircce.com                                                                        204   

 

access variables in the shared memory locations allocated to the block. Shared memories are efficient means for threads 
to cooperate by sharing the results of their work. At the middle of the table, we see global memory constant memory. 
These are the memories that the host code can write (W) and read (R) by calling API functions. The global memory can 
be accessed by all the threads at anytime of program execution. The constant memory allows read-only access by the 
device and provides faster and more parallel data access paths for CUDA kernel execution than the global memory. 

CUDA defines registers, shared memory, and constant memory that can be accessed at higher speed and in a more 
parallel manner than the global memory. Using these memories effectively will likely require re-design of the 
algorithm. It is important for CUDA programmers to be aware of the limited sizes of these special memories. Their 
capacities are implementation dependent. Once their capacities are exceeded, they become limiting factors for the 
number of threads that can be assigned to each shared memory. 

V. APPLICATIONS USING GPU 
 
A wide variety of applications have achieved dramatic speedups with GPGPU implementations. 
 
[3] A new guideline for the design and implementation of effective LSMs (Local search metaheuristics) on GPU is 
proposed. Very efficient approaches are proposed for CPU-GPU data transfer optimization, thread control, mapping of 
neighboring solutions to GPU threads, and memory management. These approaches have been experimented using four 
well-known combinatorial and continuous optimization problems and four GPU configurations. Compared to a CPU-
based execution, accelerations up to X80 are reported for the large combinatorial problems and up to X240 for a 
continuous problem. Finally, extensive experiments demonstrate the strong potential of GPU-based LSMs compared to 
cluster or grid-based parallel architectures. 
 
[4] Nvidia CUDA framework  for bitmap based association rule mining algorithm is proposed and its performance 
statistics on CPU and GPU is studied. It can solve complex financial problems from 4X to 20X faster than solving 
same problems on CPU based implementations As the financial industry is growing exponentially there is an extreme 
need of molding the huge amount of data into strategic information in a very short span of time. Using these less 
expensive GPUs even small organizations can build highly computational intensive environment to solve day to day 
complex computations in order to take competitive advantage which is critically required to survive. 
 
[5] The goal of the paper is to investigate if the GPUs can be useful accelerators for BI analytics with very large data 
sets that cannot fit into GPU’s onboard memory. GPU-accelerated implementations of analytics potentially provide 
better raw performance, better cost-performance ratios, and better energy performance ratios. 
 
[6] The data sets produced in radiological exams are growing larger everyday, which creates a severe demand on 
computing power for image segmentation algorithms. To address such demand, this work as introduced a CUDA 
implementation of a widely used fuzzy connected image segmentation method on low-cost GPUs. The results show 
that the CUDA implementation achieves a speedup from 7.2x to 14.4x over an optimized CPU implementation.  
 
[7] The paper has shown that PSO, provided with the right fitness function, can be effective in detecting traffic signs in 
real time. To speed up execution times, the algorithm exploits the parallelism offered by modern graphics cards and, in 
particular, the CUDA architecture by NVIDIA. The effectiveness of the approach has been assessed on a synthetic 
video sequence, which has been successfully processed in real time at full frame rate. 
 
[8] The paper has demonstrated how clustering for visualization of large line data can be done efficiently with a 
combination of multiple GPUs and CPUs. This parallel clustering method employs the Expectation Maximization 
algorithm to iteratively approximate the optimal data partitioning. 
 
[9] In order to take advantage of high number of cores, the paper presents a clustering scheme and collision-packet 
traversal to perform efficient collision queries on multiple configurations simultaneously. They have implemented our 
algorithms on commodity NVIDIA GPUs using CUDA and can perform 500, 000 collision queries/second on our 
benchmarks, which is 10X faster than prior GPU-based techniques. 
 
[10] A framework for solving linear algebra problems on graphics processors is presented.  
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[11] Harris et al. present a cloud dynamics simulation using partial differential equations  
 
[12] The molecular dynamics simulations have also shown impressive speedups using GPU’s. 
 
[13] The pixel engines using GPU are used in database operations for speedup. 
 
[14] M. Schatz et al uses GPU in sequence alignment and  
 
[15] AES encryption algorithms have been successfully implemented on GPUs. 
 

VI. CONCLUSION 
 
When we look at a typical computer chip, a CPU chip, versus a GPU chip, a GPU chip tends to give us 10 times more 
peak execution throughput and around six times of memory DRAM access bandwidth. With the announcement of a 
new Blue Waters petascale system that includes a considerable amount of GPU capability, it is clear GPUs are the 
future of supercomputing. The CUDA platform is a foundation that supports a diverse parallel computing ecosystem.  
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