
Volume 3, No. 6, June 2012

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 75

INFORMATION RETRIEVAL USING INDEXING SCHEME FOR TREE PATTERN

FRAMEWORK

Muthukumar. R
*1

 C. Chandrasekar
2

Research scholar*1, Associate Professor2
*1,2 Dept. of Computer Science, Periyar University, Salem, TamilNadu –India

rammuthukumar@gmail.com

Abstract: Indexing an XML database in data warehouse is a complex problem. The major rationale for indexing XML database in data

warehouse is owing to the heterogeneous and structural environment of XML data that can construct query pattern tedious. Existing techniques
focused on clustering methods based on integrating the data warehouse with web data for Online Analytical Processing (OLAP) techniques.
Through clustering process, fast retrieval of information is impossible because clustering technique exactly used for tree pattern building
framework. Most XML indexing strategies split it into several sub-queries, and subsequently connect their results to present the response to the
unique query. Join operations have been determined as the mainly time-consuming component in XML query processing for information
retrieval. To enhance the search criteria in XML database present in the data warehouse, in this paper, an indexing scheme is used which

separates the data based on the objective. An indexing technique XSeq is presented based on the tree structure pattern framework. XSeq
constructs its indexing infrastructure framework on a much simpler and symbolize both XML data and XML queries as formation encoded
sequences. Furthermore, the XSeq infrastructure unites both the content and the construction of XML documents, thus it attains a further
presentation over indexing both just content and construction, or indexing them individually. A reliable performance improvement is achieved
with the proposed IRIS (Information Retrieval using Indexing Scheme) in XML database to data warehouse, compared to an existing SDC
technique for OLAP, in terms of search path length, search cost, Maintenance.

Key words: OLAP, Information retrieval, Indexing techniques, Xseq, Search criteria

INTRODUCTION

As trade and endeavors produce and replace XML data more

frequently, there is a rising requirement for well-organized

dealing out of queries on XML data. An XML query outline

normally can be symbolized as an entrenched, tagged tree

(or called twig). Organization of XML data, particularly the

dealing out of XPath queries, has been the center of

significant research and improvement action over the past

few years.

Indexing techniques are critical for recently reacting twig

queries in a huge database comprising of collections of
XML documents. Certain a twig query given by a path

expression, a query mainframe needs to identify the

illustration of the documents or substructures thereof that

assure the charge and structural limitation given in the twig

query. A suitable indexing technique can moderately

progress the presentation of the matching operation. Twig

queries are typically termed as path expressions that

comprise no value restrictions. In common, a XML tree

pattern query might contain relationships, order restraint,

exclusion function, and wildcards. The fig 1 below describes

the XPath expressions.
Query 1: //*[A]/B/C

 *

 A B

 C

Figure 1 XML query tree pattern framework

A broad mixture of join-based, navigational, and mixture

XPath processing strategies are used for processing the

queries. These can be integrated with indexing techniques to

increase their performance. Another process of XML
indexing research centered on clustering strategies of the

XML tree nodes. The indexes are constructed on the concept

of similarity relative to cluster basically analogous XML

elements into similarity classes. Each equivalence class is a

directory node and these nodes are linked into a tree or

graph supported on their structural relationships.

Establishing these index nodes is regularly achieved using a

navigational strategy. Clustering is applied for data sets that

match to a standard scheme (e.g., an order constantly has an

order id and ship date), but the index can produce very big

for construction-rich data sets.

In this paper, we are going to implement an indexing

technique XSeq for tree pattern framework which is derived

from the XML database of data warehouse. Using XSeq,

information retrieval process from data warehouse is

efficiently done since the tree patterns are classified under

the objectives.

LITERATURE REVIEW

A well-organized matching of XML tree patterns has been

extensively measured as an interior operation in XML query

processing. To our existing knowledge, no trustworthy

indexing scheme was established for fractional match full-

text queries. Nevertheless, regarding the superior domain of

comparison search, there are some remarkable works.

Partial-match queries [1] revisit data items that enclose a

separation of the query keywords and organize the results
supported on the arithmetic properties of the matched

Muthukumar. R et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 75-80

© JGRCS 2010, All Rights Reserved 76

keywords. They are important for information repossession

on huge document repositories.

A competent dispensation of queries on XML data and

penetrating for the incidences of a tree pattern query using

different techniques like XSeq [2] in an XML database is a

middle procedure in XML query processing. A holistic twig

pattern matching algorithm [3] is presented to figure an

extended tree pattern matching concepts. Earlier algorithms

centered on XML tree pattern queries with only data

relationships. A slight work has been done on XML tree
queries [4] which may enclose wildcards, order restriction,

and negation function, all of which are normally utilized in

XML query languages [8] such as XPath and XQuery. Many

other current works then observe how to expand the most

favorable query class is used to pace up performance using

indexes [5].

An embracing investigational study of Tree Match on real-

life and synthetic data sets using twig stack [7] by

investigating the space complexity of dispensation XML

twig queries [6]. A number of strategies are increasing
around XML. These technologies encompass of XML

Schemas [9], a replacement to DTDs that increases data

typing and constrict capacities. In [10], proposed three

novel tree structures to competently achieve incremental and

interactive HUP mining. A novel genetic programming

(GP) approach [11] removing the

numerous tree prearranged patterns from tree planned data

using soft clustering with a visualization representation [12].

In this work, we are implementing an indexing scheme to

tree pattern framework for information retrieval process.

INFORMATION RETRIEVAL USING INDEXING

SCHEME FOR TREE PATTERN FRAMEWORK

The proposed indexing scheme is efficiently designed for

information retrieval process from data warehouse based on

tree pattern framework. The proposed information retrieval
indexing scheme operates under two phases. The first phase

is to identify the XML data present in the XML database

present in the active data warehouse. The second phase is to

use an indexing scheme XSeq to the constructed tree pattern

framework. The architecture diagram of the proposed

information retrieval indexing scheme for tree pattern

framework is shown in fig 3.1.

Figure 3.1 Architecture diagram of the proposed IRIS using XSeq

The first operation is identifying the XML data retrieved

from the data warehouse. Information retrieval systems are

regularly differentiated with relational databases.

Conventionally, IR systems have recovered information
since formless text - by which mean ``raw'' text with no

markup. Databases are considered for querying collection of

records that include values for predefined attributes such as

employee number, title and salary.

The second operation is to apply indexing scheme for

constructing tree structure pattern framework based on XSeq

indexing scheme. XSeq constructs its indexing

communications framework based on simpler data model

i.e., sequences. Signify XML data and queries equally as

formation encoded sequences. This novel data
representation conserves query equality, and more

significantly, structured queries can be countered openly

without resorting to join operations. Furthermore, XSeq

infrastructure framework unites indices on mutually the

content and the structure of XML documents for indexing

them individually.

Process of Xseq:

Querying XML data is secure to identifying the sub

structures of the data that equal the query construction. The

query structure comprises values, tree patterns, wild-cards

(„*‟ and „//‟), etc. The principle of XML indexing is to

present effective support for structured queries.

Nevertheless, in state of-the-art indexing resolution tree

pattern is the most normally sustained query interface and
represented as:

)(NodeIdspSimplepath

That is, for a given path, the index construction precedes a

collection of nodes that symbolize such a path. Some index

strategies expand the above interface to sustain paths that

begin with a „*‟ or „//‟ with a much bigger index. Still, for

tree-pattern queries or queries with „*‟ or „//‟within, it is

necessary to molder them into a collection of simple path
queries. Then join operations are integrated with it to

response the original query. To avoid expensive join

operations, in this work, a sequence-based XML indexing, is

presented which represents a chief disappearance from

preceding XML indexing approaches. The new method

gives a more common query interface as

)(DocIdspnTreepatter

That is, for a given tree pattern, the index proceeds a

collection of XML documents that enclose such a pattern.

XSeq for building tree pattern framework:

Instead of openly controlling tree structures, XSeq assumes

a data model: sequences. There are numerous ways to

Muthukumar. R et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 75-80

© JGRCS 2010, All Rights Reserved 77

change a tree structure to a sequence. For illustration, we

can predetermine each node by the path primary from the

root to the node, and symbolize an XML tree by its preorder

series. In the similar way, transfer XML queries to preorder

sequences.

The intention is to achieve XML queries by subsequence

matching so that prearranged queries can be practiced as a

whole as a substitute of being busted out into slighter query

units, since merging the outcomes of these sub queries

during join operations is exclusive. The most significant step
is to ascertain query similarity among a structure match and

a subsequence match. The process of building the tree

pattern framework is shown in fig 3.2.

Figure 3.2 Process of building tree pattern framework using XSeq

The partition of XML document is done based on the XSeq

indexing scheme. XSeq recognizes a collection of

chronological representations for a tree structure, each of

which conserves query equivalence. Then XSeq formulates

the decision based on the DTD schema or the delivery of the

dataset, which guides us to the „best‟ sequencing technique

in terms of index and query performance. The process of

building tree pattern framework is defined with an

illustration made over with the books and can be partitioned

based on the indexing scheme by XSeq. The partitioned

XML document based on indexing units using XSeq is

shown in fig 3.3.

Figure 3.3 Partition of XML document into tree pattern framework based

on indexing scheme

From the above figure, book is an XML document which

has been partitioned based on indexing scheme XSeq. The

Xml document is partitioned based on title, author, Chapter

and sections. So, it will be easy for the user to search the

necessary documents and retrieve it from the data

warehouse. The algorithm below describes the process of

indexing scheme using XSeq for information retrieval.

Step 1: Data Warehouse (large collection of data)

Step 2: Identify the XML data (Entities and its relationships)

Step 3: Retrieve the semantic data

Step 4: For an illustration

Consider a sample set of XML schema as:

<xs: schema>
<xs: element name="book">

<xs: element name="title" type="xs: string“/>

<xs: element name="author" type="xs: string"

minOccurs="0" maxOccurs=“2"/>

</xs: element>

</xs: schema>

Step 5: Use XSeq indexing scheme

Step 6: Partition the XML document as several indexes

based on its types and

 objectives.

Index 1
<Book>

 <Title> …..

 </Title>

 <Author>

 List of authors

 </Author>

</Book>

Index 2

<Book>

 <Chapter>

 <Heading>
 <Sub-heading>

 <Introduction>

 </ Sub-heading>

 </Heading>

 </Chapter>

</Book>

Index 3

<Book>

 <Chapter>

 <Section>

 <Sub-section>

 </ Sub-section>
 </Section>

 </Chapter>

</Book>

Step 7: Build the tree pattern framework based in index (As

like Fig 3.3)

Step 8: Structured tree formed based on indexing scheme

The above algorithm describes the entire process of

indexing scheme using XSeq for tree pattern building

framework mainly for information retrieval process. Step 1

to 4 describes the process of retrieval of XML data from the
data warehouse. Then, XSeq indexing scheme is applied to

those retrieved XML data to form a tree structure. A sample

XML schema is used and the schema is built as tree

structure based on index criteria depends on its types. So, it

will be easy for the user to search the required XML data

from the tree by choosing the efficient shortest path to reach

the destination.

Muthukumar. R et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 75-80

© JGRCS 2010, All Rights Reserved 78

EXPERIEMNTAL EVALUATION

Widespread experimental studies have been examined to

estimate the performance of the proposed information

retrieval indexing scheme using XSeq indexing scheme for

tree pattern framework. We have employed the proposed

information retrieval indexing scheme using XSeq indexing

scheme for tree pattern framework in Java, and permitted
out a series of performance research in order to monitor the

effectiveness of the proposed information retrieval process

using XSeq indexing scheme for tree pattern framework. We

ran our experimentation using diverse sets of XML data and

queries. The proposed indexing scheme approach efficiently

built the tree pattern framework for the XML data from DW

using XSeq and tree pattern framework is done based on

index criteria. The performance of the proposed information

retrieval indexing scheme using XSeq indexing scheme for

tree pattern framework is measured in terms of

i) search path length,
ii) search cost,

iii) Maintenance.

Search Path Length is defined as the average number of

index path traversed by a query message prior to it achieves

the destination.
n

i

QlengthSearchpath
1

1 ……… (eqn 1)

Where i=1 to n be the path taken by the query Q1

Search cost is defined as the average number of XML data
earns in the search process.

),,(cos tPLdretrivetsearch ………. (eqn 2)

Where d- XML data

PL –Path Length

t- time interval

i.e., average number of XML data being retrieved from the

XML database at a particular interval of time t.

Maintenance is defined as the average number of index
criteria are maintained under the indexing scheme.

RESULTS AND DISCUSSION

In this work, we have observed how the tree pattern

framework is competently built with the proposed
information retrieval indexing scheme using XSeq indexing

scheme for tree pattern framework written in mainstream

languages such as Java. We used different sets of XML data

for comparing the results of the proposed information

retrieval indexing scheme using XSeq indexing scheme for

tree pattern framework with an existing SDC technique for

integrating the DW and web data using semantic data. The

below table and graph describes the performance obtained

through experimental evaluation.

Table 5.1 No. of queries vs. Search path length

No. of

queries

Search path length

Proposed IRIS Existing SDC

5 2 8

10 6 12

15 9 16

20 12 19

25 15 22

The above table (table 5.1) describes the process of queries

choosing the index path to reach the destination in the tree

pattern framework. The outcomes of the proposed

information retrieval indexing scheme using XSeq indexing

scheme for tree pattern framework is compared with an

existing SDC technique for integrating the DW and web

data using semantic data.

0

5

10

15

20

25

0 5 10 15 20 25 30

No. of queries

S
e
a
r
c
h

p

a
t
h

l
e
n

g
t
h

Proposed IRIS Existing SDC

Figure 5.1 No. of queries vs. Search path length

Fig 5.1 describes the process of queries choosing the index

path to reach the destination in the tree pattern framework.
Since the proposed IRIS used XSeq for build the tree, the

tree pattern framework is done based on sequences. The

trees were built with an appropriate index criterion and has

been grouped based on the objective. So, the process of

analyzing the required data by the user consumes less time.

The path chosen for searching the required data had also

been small. Even the number of queries increases in the

proposed IRIS, the queries will reach the destination in a

less interval of time by choosing the smart path to reach the

destination. Compared to an existing SDC technique, the

search path length of the proposed information retrieval
indexing scheme using XSeq indexing scheme for tree

pattern framework is less and variance is 25-30% less in the

proposed IRIS.

Table 5.2 No. of queries vs. Search cost

No. of

queries

Search cost

Proposed IRIS Existing SDC

5 8 4

10 13 7

15 17 11

20 19 14

25 24 16

The above table (table 5.2) describes the amount of retrieval

of XML data in a particular interval of time from the tree

pattern framework. The outcomes of the proposed

information retrieval indexing scheme using XSeq indexing

scheme for tree pattern framework is compared with an

existing SDC technique for integrating the DW and web

data using semantic data.

Muthukumar. R et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 75-80

© JGRCS 2010, All Rights Reserved 79

0

5

10

15

20

25

30

0 5 10 15 20 25 30

No. of queries

S
e
a
r
c
h

c
o

s
t

Proposed IRIS Existing SDC

Figure 5.2 No. of queries vs. Search cost

Fig 5.2 describes the amount of retrieval of XML data in a

particular interval of time from the tree pattern framework.

Since the proposed IRIS used less path length, the amount of

XNL data retrieved by processing the query is high. The tree

pattern framework is done based on index criteria, the

amount of retrieval of information is high even the number

of queries in the queue length increases. The proposed IRIS
accomplished shortest path for searching the index value,

the amount of retrieval of information at a particular interval

of time is large enough compared to an existing SDC

technique for integrating the DW and web data using

semantic data and the variance is 30-40% high in the

proposed IRIS.

Table 5.3 No. of data vs. Maintenance

No. of data Maintenance of tree (index criteria (%))

Proposed IRIS Existing SDC

10 14 5

20 20 12

30 28 17

40 35 20

50 50 22

The above table (table 5.3) describes the maintenance of tree

pattern framework when more number of data contents is

added into the database. The outcomes of the proposed

information retrieval indexing scheme using XSeq indexing

scheme for tree pattern framework is compared with an

existing SDC technique for integrating the DW and web

data using semantic data.

0

10

20

30

40

50

60

0 10 20 30 40 50 60

No. of data

M
a
i
n

t
e
n

a
n

c
e

(
%

)

Proposed IRIS Existing SDC

Figure 5.3 No. of data vs. Maintenance

Fig 5.3 describes the maintenance of tree pattern framework

when more number of data contents is added into the

database. The existing SDC technique built the tree pattern

framework by clustering technique, so the process of

maintaining the XML data in the framework is not as good

as the proposed IRIS. Compared to an existing SDC

technique for integrating the DW and web data using

semantic data, the proposed IRIS maintained the tree pattern

framework efficiently by using the sequences and grouped

under the on objective of the XML data.

At last, it is being noted that the proposed IRIS efficiently

built the tree pattern framework based on indexing schemes

and allowed the search path criterion framework as easy as

possible even the number of data contents in the XML

database increases.

CONCLUSION

In this paper, we proposed an indexing scheme XSeq that

supports for building the tree pattern framework based on

index criteria. We developed the tree based on sequences

using XSeq by minimizing the search path length for

retrieval of information from XML database present in the

data warehouse. Search path length is a significant

performance evaluation since it concerns the query response

time. The proposed IRIS shows that the search path is

shortest. To recognize the purpose for a query, the proposed
IRIS system consumes almost only half of the number of

index path compared to an existing SDC technique.

Experimental results showed that the proposed IRIS using

XSeq

Efficiently builds the tree pattern based on indexing scheme

and it allowed to process the contents in the database in a

shortest path in a less interval of time compared to an

existing SDC technique. The performance evaluation brings

out the proposed IRIS provides fast retrieval of information

and the performance is 80-90% high contrast to an existing
SDC technique which builds the tree pattern based on

clustering technique.

REFERENCES

[1]. Dyce Jing Zhao, Dik Lun Lee, ET. AL., “DPTree: A

Distributed Pattern Tree Index for Partial-Match Queries in

Peer-to-Peer Networks”, EDBT'06 Proceedings of the 10th

international conference on Advances in Database

Technology, Pages 515-532, 2006

[2]. Xiaofeng Meng , Yu Jiang et. Al., “XSeq: An Indexing

Infrastructure for Tree Pattern Queries”, Proceedings of the

ACM SIGMOD international conference on management

of data, ACM Press (2004)

[3]. Jiaheng Lu, Tok Wang Ling, et. Al., “Extended XML Tree

Pattern Matching: Theories and Algorithms”, IEEE

TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, VOL. 23, 2011

[4]. A. Berglund, S. Boag, and D. Chamberlin, XML Path

Language (XPath) 2.0, W3C Recommendation,

http://www.w3.org/TR/xpath20/, Jan. 2007.

[5]. S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agrawal,

and K.S. Candan, “Twig2stack: Bottom-Up Processing of

Muthukumar. R et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 75-80

© JGRCS 2010, All Rights Reserved 80

Generalized-Tree-Pattern Queries over XML Document,”

Proc. Int‟l Conf. Very Large Data Bases (VLDB), pp. 19-

30, 2006.

[6]. M. Shalem and Z. Bar-Yossef, “The Space Complexity of

Processing XML Twig Queries over Indexed Documents,”

Proc.24th Int‟l Conf. Data Eng. (ICDE), 2008.

[7]. T. Yu, T.W. Ling, and J. Lu, “Twigstacklistnot: A Holistic

Twig Join Algorithm for Twig Query with NOT-Predicates

on XMLData,” Proc. Database Systems for Advanced

Applications (DASFAA),pp. 249-263, 2006.

[8]. W. Wang, H. Wang, H. Lu, H. Jiang, X. Lin, and J. Li,

“Efficient Processing of XML Path Queries Using the

Disk-Based F&B Index,”Proc. Int‟l Conf. Very Large Data

Bases (VLDB), pp. 145-156, 2005.

[9]. Zhifeng Bao, Jiaheng Lu et. Al., „Towards an Effective

XML Keyword Search‟, IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING, VOL. 22,

NO. 8, AUGUST 2010

[10]. Ahmed,C.F. Tanbeer, S.K. et. Al., “Efficient Tree

Structures for High Utility Pattern

MininginIncrementalDatabases”,IEEE Transactions on

Knowledge and Data Engineering, Volume: 21 , Issue: 12 ,

Dec 2009

[11]. Kengo Yoshida et. Al., “Evolution of multiple tree

structured patterns using soft clustering”, 2010 The 2nd

International Conference on Computer and Automation

Engineering (ICCAE).

[12]. Liang Gou et. Al., “TreeNetViz: Revealing Patterns of

Networks over Tree Structures”, IEEE Transactions on

Visualization and Computer Graphics, Volume: 17 , Issue:

12, dec 2011

Short Bio Data Authors Profile

Mr. R.Muthukumar obtained M.Sc., Computer Science

from P.S.G College, Bharathiyar University, Coimbatore,

Tamil Nadu, India, in 2000, and M.Phil., Computer Science

from Manonmaniam Sundaranar University, Thirunelveli,

Tamil Nadu, India in 2002. He was working as IT analyst ,

in Department of Software development, TATA

Consultancy Services ,Bangalore, Karnadaka, India.

Currently he is working as Tech Lead in Department of
Software development, Infosys, Bangalore, Karnadaka,

India. He is pursing Ph.D in Data warehouse.

Dr. C. Chandrasekar completed his Ph.D in Periyar

University, Salem at 2006. He worked as Head, Department

of Computer Applications at K.S.R. College of Engineering,

Tiruchengode, Tamil Nadu, India. Currently he is working

as Associate Professor in the Department of Computer

Science at Periyar University, Salem, Tamil Nadu. His

research interest includes Mobile computing, Networks,

Image processing and Data mining. He is a senior member
of ISTE and CSI.

