
Volume 3, No. 9, September 2012

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 31

REQUIREMENT ENGINEERING: AN APPROACH TO QUALITY SOFTWARE

DEVELOPMENT

Dhirendra Pandey
1
, Vandana Pandey

2

*1Department of Information Technology Babasaheb Bhimrao Ambedkar University, Lucknow

Prof.dhiren@gmail.com
2Department of Computer Science Dr. C. V. RamanUniversity, Bilaspur

Vandanadubey7@gmail.com

Abstract: The requirement engineering is the process of collection of requirements and further, implements it to the software

development process. It is important for every organization to develop quality software products that satisfy the user’s needs. To
achieve this goal we have to apply requirement engineering practices in every step of software development process. We use

requirement engineering practices because requirement engineering is most important phase of software development process and

with the help of requirement engineering practices we collect user’s requirement and implement them in software development

process. The purpose of this paper is to give an idea to how requirement engineering is necessary for software development and

how requirement engineering influences the software development process. In this paper we analyze the requirement engineering

process for designing quality software products and also describe the importance of requirement engineering.

INTRODUCTION

The term requirement engineering are used to describe a

systematic process of developing requirements through an

iterative co-operative process of analyzing problem,

documenting the resulting observation in a variety of

representation formats, and checking the accuracy of the

understanding gained. Requirements engineering is a

transformation of business concerns into the information

system requirements. Therefore, we can define requirements

engineering as [1]: Systematic approach to eliciting,

organizing, and documenting the requirements of the

system, and a process that establishes and maintains
agreement between the customer and the project team on the

changing requirements of the system. The requirements

engineering is the first phase of software engineering

process, in which user requirements are collected,

understood, and specified. Requirements engineering is

recognized as a critical task, since many software failures

originate from inconsistent, incomplete or simply incorrect

requirements specifications. Many of the most common,

most serious problems associated with software

development are related to requirement.

CLASSIFICATION OF REQUIREMENTS

ENGINEERING PROCESS

In this section we present the overall framework within

which requirements engineering takes place. The result of

the requirements engineering phase is documented in the

requirements specification. The requirements specification
reflects the mutual understanding of the problem to be

solved between the analyst and the client. The requirements

specification servers as a starting point for the next phase,

the design phase. To achieve well-defined documents

containing the user requirements that satisfy these

prerequisites, we can distinguish three processes in

requirements engineering [2]. These processes involve

iteration and feedback (figure 1). Several classifications

have been proposed for requirements engineering. [3]:

a. Requirement elicitation

b. Requirement specification

c. Requirement verification and validation.

Figure1: Requirement Engineering Process

Requirements Elicitation:

Requirements elicitation is about understanding the

problem. In general, the requirements analyst is not an
expert in the domain being modeled. Through interaction

with domain specialists, he has to build himself a

sufficiently rich model of that domain. The fact that

different disciplines are involved in this process complicates

matters. It many cases, the analyst is not a mere outside

observer of the domain modeled, simply eliciting facts from

domain specialists.

Requirements Specification:

Once the problem is understood, it has to be described in the

requirements specification document. This document

describes the product to be delivered, not the process of how

it is developed.

Dhirendra Pandey et al, Journal of Global Research in Computer Science, 3 (9), September 2012, 31-33

© JGRCS 2010, All Rights Reserved 32

Requirements Validation and Verification:

Once the problem is described, the different parties involved

have to agree upon its nature. We have to ascertain that the

correct requirements are stated(validation) and that these

requirements are stated correctly(verification).

REQUIREMENTS ENGINEERING AND SOFTWARE

DEVELOPMENT LIFE CYCLE

Many models exist for the system and/or software life cycle,

the series of steps that a system goes through from first
realization of need through construction, operation, and

retirement [4]. Almost all models include one or more

phases with a name like “requirements analysis” or “user

needs development”. Many models require generation of a

document called, or serving the function of, a requirements

specification. Even those that do not call for such a

document, for example Jackson System Development, have

a product such as a diagram of diagrams that incorporate or

express the user’s needs and the development objectives [5].

Waterfall models are briefly discussed subsequently and the

way requirements engineering fits into them are presented.
Among the most extensively used models are baseline

management and the waterfall, on which baseline

management is based, [6].

In this models, as shown in Figure 2 and 3, determination of

requirements should be complete, or nearly so, before any

implementation begins. Baseline management provides a

high degree of management visibility and control has been

found suitable for developments of very large size in which

less complex methods often fail, and is required under many

software development systems. This model, however, has
been somewhat discredited, because when large complex

systems are developed I practice it is usually impossible to

develop an accurate set of requirements that will remain

stable throughout the months or years of development that

follow completion of the requirements.

Figure 2: The baseline management and waterfall models

Figure 3: The Linear Software Development Lifecycle

REQUIREMENT ENGINEERING PRACTICES

The principles of requirements engineering described above

are valid and important, but for practical application

additional specifies are needed. These specifies ate provided

by methods and tools. A method, sometimes referred to as a

methodology, describes a general approach; a tool, usually

but not always automated, provides a detailed, step- by –step

approach to carrying out a method.

Methods:

Requirements analysis methods may be roughly divided into

four categories, as shown in Figure 4. The categorizations

should not be regarded as absolute: most methods have

some of the characteristics of all the categories, but usually

one viewpoint is primary.

Figure 4: Categories of requirements analysis methods

Process-oriented methods take the primary viewpoint of the

way the system transforms inputs into outputs, with less

emphasis on the data itself and control aspects. Classical

structured analysis and fits into his category, as do

structured analysis and design technique [7,8], and formal

methods such as Vienna development method and Z (A
Formal Specification Method). Data – oriented methods

emphasize the system state as a data structure [9, 10]. While

structured analysis and structured analysis and design

techniques have secondary aspects of the data viewpoint,

entity-relationship modeling and Jackson system

development are primarily data oriented. Control-oriented

methods emphasize synchronization, deadlock, exclusion,

concurrence, and process activation and deactivation.

Structured analysis and design techniques and the real-time

extensions to structured analysis [11 , 12] are secondarily

control oriented. Flowcharting is primarily process oriented.

Finally, object-oriented methods base requirements analysis
on classes of objects of the system and their interactions

with each other.

The number of tools that support requirements engineering

is growing rapidly, and even the most cursory survey is

beyond the scope of this paper. Nevertheless, some

discussion of the characteristics of requirements engineering

 Process Oriented

 Data Oriented

 Control Oriented

 Object Oriented
System

Requirement

Feasibility
Analysis

Requirement
Gathering

System
Design

Code &
Test

System
Test

Requirements

 Design

Code

 Text

Integrate

Dhirendra Pandey et al, Journal of Global Research in Computer Science, 3 (9), September 2012, 31-33

© JGRCS 2010, All Rights Reserved 33

tools, and trends in these characteristics, is in order. One of

the researchers has classified requirements tools as follows:

a. Graphical editing

b. Traceability

c. Behavior modeling

d. Databases and word processing

e. Hybrid

IMPORTANCE OF REQUIREMENTS

ENGINEERING PRACTICES

The primary measure of success of a software system is the

degree to which it meets the purpose for which it was

intended. Broadly speaking, software systems requirements

engineering is the process of discovering that purpose, by

identifying stakeholders and their needs, and documenting
these in a form that is amenable to analysis, communication,

and subsequent implementation. There are a number of

inherent difficulties in this process. Stakeholders (including

paying customers, users and developers) may be numerous

and distributed. Their goals may vary and conflict,

depending on their perspectives of the environment in which

they work and the tasks they wish to accomplish. Their

goals may not be explicit or may be difficult to articulate,

and, inevitably, satisfaction of these goals may be

constrained by a variety of factors outside their control.

CONCLUSION

The most common, most serious problems associated with

software development are related to requirement analysis.

Begin from the term definition, we discussed the

requirements engineering and its dimension. And finally,

we analyzed the requirement engineering practices and give
the importance of requirement engineering practices for

designing quality software products from several

viewpoints.

BIBLIOGRAPHY

[1]. Romi satria wahono,”Analyzing Requirement engineering

Problem”, IECI Janpan workshop, Japan, page 55-58, 2009

[2]. P. Loucopoulos and V. Karakostas: Software Requirements

Engineering, McGraw-Hill,1995.

[3]. Davis, Alan M. ,private communication, 1996.

[4]. IEEE Standard 610.12-1990, IEEE Standard Glossary of

Software Engineering Terminology, IEEE, NY, 1990.

[5]. Cameron, John R. , “An Overview of JSD,” IEEE

Transactions on Software Engineering, Vol. 12, No. 2, pp.

222-240, 2011

[6]. Royce, Winston W., “Managing the Development of Large

Software Systems,” Proceedings, IEEE Wescon, August 1970.

Reprinted in Proceedings, 9th International Conference on

Software Engineering (Monterey, CA, pp 328-338, 2008.

[7]. Svoboda, Cyril P., “Tutorial on Structured Analysis,” in

System and Software Requirements Engineering, R.H. Thayer

and M. Dorfman, eds., IEEE Computer Society Press, Los

Alamitos, CA,1990.

[8]. Ross, Douglass T., “Structured Analysis (SA): A Language

for Communication Ideas,” IEEE Transaction on Software

Engineering, Vol. 3, No. 1, pp. 17-29, January 2007

[9]. Bjoerner, Dines, “On the Use of Formal Methods in Software

Development,” Proceedings, 9th International Conference on

Software Engineering (Monterey, CA, March 30-April 2,

1987), IEEE Computer Society Press, Washington, pp.17-29,

2006.

[10]. Norris, M., “Z (A Formal Specification Method). A Debrief

Report,” STARTS, National Computing Centre, Ltd., 1986.

Reprinted in System and Software Requirements Engineering,

R.H. Thayer and M. Dorfman, eds., IEEE Computer Society

Press , Los Alamitos, CA, 1990.

[11]. Ward, Paul T., and Stephen J Mellor, Structured Development

Techniques for Real-Time Systems (3 vols.). Prentice-Hall,

Englewood Cliffs, NJ, 1985.

[12]. Hatley, Derek J., “The Use of Structured Methods in the

Development of Large Software-Based Avionics Systems,”

AIAA Paper 84-2592, Sixth Digital Avionics Systems

Conference (Baltimore,MD. December 3-6), 1984.

