
ISSN (Print) : 2320 – 3765 
ISSN (Online) : 2278 – 8875 

 

     International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering  

      Vol. 2, Issue 4, April  2013 

 

Copyright to IJAREEIE                                                            www.ijareeie.com                                                                            1406          

RISC SYSTEM DESIGN IN XILINX 

Deepak Kumar
1
, K.Anusudha

2
 

M.Tech. Student, Dept. of Electronics Engineering, Pondicherry University, Puducherry
1
 

Assistant Professor, Dept. of Electronics Engineering, Pondicherry University, Puducherry
2 

 

Abstract: This paper presents the Reduced Instruction Set Computer (RISC) system using VHDL and the results are 

analyzed  in an FPGA system . This paper presents a RISC processor designing to achieve OR, AND, NAND, NOR, 

XOR, XNOR, ADD, SUBTRACT, NOT, INCREMENT, DECREMENT, etc operations. The 20-bit RISC system has 

high general-purpose register (GPR) orthogonality and communicates to peripheral devices via a serial bus.  

 
Keywords: Arithmetic Logic Unit (ALU), Control Unit (CU), General Purpose Register(GPR), Program Counter(PC) 

Instruction Register(IR), Reduced Instruction Set Computer(RISC) .  

 
I. INTRODUCTION 

RISC-The IBM was the first company to define the RISC (Reduced Instruction Set Computer) architecture in the 

1970s. This research was further developed by the universities of Berkeley and Stanford to give basic architectural 

models. 

RISC can be described as a philosophy with three basic levels: 

 All instruction will be executed in a single cycle. 

 Memory will only be accessed via load and store instruction. 

 All executions units will be hardwired with no micro coding. 

 

Reduced Instruction Set Computer (RISC) strategy based on the insight that simplified instructions can provide 

higher performance if this simplicity enables much faster execution of each instruction. It use fewer instructions with 

simple constructs, therefore they can be executed much faster within the CPU without having to use memory as 

often.[2] 

The instruction set is the hardware ―language‖ in which the software tells the processor what to do. Surprisingly, 

reducing the size of instruction set, eliminating certain instructions based upon a careful quantitative analysis, and 

requiring these seldom, used instructions to be emulated in software can lead to higher performance. For several 

reasons Some of the uses for the space:  

 Additional registers. 

 On-chip caches which are clocked as fast as the Processor. 

 Additional functional units for superscalar execution. 

 Increased pipeline depth. 

 Branch prediction. 

 The vacated area of chip can be used in ways that accelerate the performance of more commonly used 

instructions. 

 It becomes easier to optimize the design. 

It is a type of microprocessor architecture that utilizes a small, highly-optimized set of instructions. It is designed to 

perform a smaller number of types of computer instructions so that it can operate at a higher speed.  

Main features of a RISC processor are to load/store designs few addressing modes, fixed instruction size, few 

instruction formats, few operand sizes, use more registers, separate memory operations, better compilation, many 

instructions that access memory directly, variable length instruction encoding and pipelining can be implemented easily. 

[5] 

 

Basically the philosophy is that instructions are handled in parts: 

 Fetch the instruction. 

 Get the arguments  

 Perform the action  

 Write back the result 

 

It has the ability to execute one instruction per cycle. This is done by overlapping the fetch, decode, and execute 

phases of two or three instructions by using a procedure referred to as pipelining. The RISC provides higher  

 

http://www.ijareeie.com/


ISSN (Print) : 2320 – 3765 
ISSN (Online) : 2278 – 8875 

 

     International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering  

      Vol. 2, Issue 4, April  2013 

 

Copyright to IJAREEIE                                                            www.ijareeie.com                                                                            1407          

 

performance in computing because of little need of the external fetches, which take significant amount of processor 

time and also because of hard-wired instruction implementation [5]. 

 

FPGA- Field Programmable Gate Array. Conceptually it can be considered as an array of Configurable Logic Blocks 

(CLBs) that can be connected together through a vast inter connection matrix to form complex digital circuits. It is an 

integrated circuit designed to be configured by a customer or a designer after manufacturing—hence "field-

programmable". The FPGA configuration is generally specified using a hardware description language (HDL). FPGAs 

contain programmable logic components called "logic blocks", and a hierarchy of reconfigurable interconnects that 

allow the blocks to be "wired together"—somewhat like many logic gates that can be inter-wired in different 

configurations.[6] 

Main features of FPGA are- 

 Simple’ Programmable Logic Blocks. 

 Innovative logic structure.  

 Larger Logic Functions built up by connecting many Logic Blocks together. 

 Massive Fabric of Programmable Interconnects. 

 Rich feature set including high-performance DSP blocks and on-chip memories. 

 FPGAs are perfect for rapid prototyping of digital circuits 

 High speed I/O pins and external memory interfaces. 

 CLBs – It stands for configurable logic blocks. It provides the functional element to implement most of the 

logic gates. 

 Input/output Blocks – It provides the interfacing between the package pins and the internal logic.  

 Delay–Locked loops (DLLs) – It is used to distribute the clock and properly compensate the delays.  

 Blocked RAMs – Each RAM has 4096 bits.   

The paper is organised in such a way that the section II explains the Proposed Risc Architecture, section III explain 

the instruction format , section VI explain the instruction set; section VII shows the simulation results for different 

inputs. Finally, section VIII summarises the paper. 

. 

II. PROPOSED RISC ARCHITECTURE  

The Architecture of RISC system is shown in Fig. 1. It includes Memory, Instruction Cache, Data Cache, Standard 

Processor and Configurable array. 

 

 

Fig. 1 RISC System Architecture 

 

RISC consists of: This system can be separated into several states as shown in Figure 1. Each state describes the 

current operation or process being performed by the CPU and is described in a VHDL module. Each module is 

connected via a single high-level module. The high level module is displayed in Figure1. This system is the hardware  

 

http://www.ijareeie.com/


ISSN (Print) : 2320 – 3765 
ISSN (Online) : 2278 – 8875 

 

     International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering  

      Vol. 2, Issue 4, April  2013 

 

Copyright to IJAREEIE                                                            www.ijareeie.com                                                                            1408          

 

within a computer system which carries out the instructions of a computer program by performing the basic 

arithmetical, logical, and input/output operations of the system.  

 

Register Set (RS): In this information is encoded, stored, and retrieved. The RS of this system contains the 

following registers:   

 IR - holds the current instruction. 

 PC - holds the address of the next instruction. 

 Load - holds data loaded from memory. 

 Store - holds data being stored to memory. 

 SR - when an operation involves two operands, the status signals are updated. The SR can also the used as an 

operand in arithmetic and logical operations. 

 GPR[x] -up to 64 GPRs can be used in this architecture. 

All GPRs and the SR can be used in any operation except for the load and store instructions. Only GPR can be used 

for loading and storing. 

Instruction Fetch Machine: This machine fetches an instruction from external memory, and upon completion of 

the instruction fetch cycle this machine signals the decoder to decode the instruction. This machine utilizes a 3-bit up-

counter with an active low reset. the CPU changes states and begins to decode the instruction. 

Decoder: Upon completion of the instruction fetch cycle, the instruction is decoded. The decoder reads bit 3 down 

to 0 of the IR, decides which of the sixteen operations the CPU needs to performs, and signals one of the next states to 

begin its operation. 

Move Machine: The move machine controls all register movement. The most basic of these movements is the 

movement of data from one GPR to another GPR.Upon completion of the movement of data, a new instruction is 

fetched. 

 Arithmetic Logic Unit: The ALU performs arithmetic and logical operations on data. The data is taken from two 

GPRs and is moved to the ALU. The result is stored in a GPR. For operations that involve one operand, a GPR can be 

specified to store the result. The ALU supports two’s complement data. 

III. INSTRUCTION SETS 

The processor with 4 bit opcode to allow instruction to perform various operations such as or ,and , nand, nor , xor, 

xnor , add , subtract, not , increment, decrement, etc. Each opcode has specific operation in processor; RISC have  4-bit 

opcode that can perform 16 different operations. Table 2 shows the instruction set for RISC processor. 

TABLE II 

INSTRUCTION SETS 

 

OPCODE FUNCTION Operation performed 

0000 OR OR operation of two registers 

0001 AND AND operation of two registers 

0010 NAND NAND operation of two registers 

0011 NOR NOR operation of two registers 

0100 XOR XOR operation of two registers 

0101 XNOR XNOR operation of two registers 

0110 OPER_X+ OPER_Y ADD operation of two registers 

0111 OPER_X-OPER_Y SUBTRACT operation of two registers 

1000 OPER_X+ 1 Increment the value by 1 

 

 

 

 

 

 

http://www.ijareeie.com/


ISSN (Print) : 2320 – 3765 
ISSN (Online) : 2278 – 8875 

 

     International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering  

      Vol. 2, Issue 4, April  2013 

 

Copyright to IJAREEIE                                                            www.ijareeie.com                                                                            1409          

IV. INSTRUCTION FORMAT 

The RISC is 20-bit processor so that the value of each instruction is 20 bits. Each instruction decodes by internal 

decoder and RISC machine fetches an instruction from the memory. In this RISC two 8-bit instructions are coming as 

inputs i.e. 8-bit x and 8-bit y. and 0 to 3 bits is the opcode for instruction of performed operations.  

Table no.1 shown the input instruction format.[5] 
TABLE I 

INSTRUCTION FORMAT for INPUT 

R[y] R[x] OPCODE 

19                    12 11                        4 3                      0 

V.  SIMULATION & RESULT 

The RISC processor is simulated using Xilinx ISE version 13.2. The simulation result is shown in Figures. Top 

Block of RISC is shown in fig. 2; Simulate Behavioral Model shown in Fig. 3; simulation with test bench  for all 

opcode shown in fig.4;  output for OR Gate, AND Gate and NAND gate shown in fig.5; output for NOR Gate, XOR 

Gate and XNOR gate shown in fig.6;  output for ADD operation and SUBTRACT operation shown in fig.7. 
 

 

Fig.2 Top Block 

 
 

Fig.3 Simulation results 
 

 

 

Fig.4 simulation with test bench  for all opcode. 

 

 

   

http://www.ijareeie.com/


ISSN (Print) : 2320 – 3765 
ISSN (Online) : 2278 – 8875 

 

     International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering  

      Vol. 2, Issue 4, April  2013 

 

Copyright to IJAREEIE                                                            www.ijareeie.com                                                                            1410          

 

The value of oper_x is 00100000 and  data_x is 00000000; Oper_y is 00000000 and  data_y is 00001001, the 

instruction for 0000 is Or, for OR operation the output result is  00001001. 

The value of oper_x is 00100000 and data_x is 00001001; Oper_y is 00000000 and  data_y is 00000101, the 

instruction for 0001 is AND, for AND operation the output result is  00000001. 

The value of oper_x is 01000000 and data_x is 00000101; Oper_y is 00000000 and  data_y is 00000101,the 

instruction for 0010 is NAND, for NAND operation the output result is  11111010. 

 

 

  

Fig.6 output for NOR Gate, XOR Gate and XNOR gate 

 

The value of oper_x is 00000110 and  data_x is 00000000; Oper_y is 00000010 and  data_y is 00001000,the 

instruction for 0011 is NOR, for NOR operation the output result is  11110111. 

The value of oper_x is 00100000 and  data_x is 00000000; Oper_y is 00000010 and data_y is 00000101,the 

instruction for 0100 is XOR, for XOR operation the output result is  00000101. 

The value of oper_x is 00010000 and  data_x is 00000000; Oper_y is 00000010 and data_y is 00001000,the 

instruction for 0101 is XNOR, for XNOR operation the output result is  11110111. 

 

 

 

Fig.7 output for ADD operation and SUBTRACT operation 

The value of oper_x is 00001000 and  data_x is 00000000; Oper_y is 00011010 and  data_y is 00000001,the 

instruction for 0110 is x+y,  for x+y operation the output result is  00000001. 

The value of oper_x is 00001100 and  data_x is 00000000; Oper_y is 00001100 and  data_y is 00000000,the 

instruction for 0110 is x-y,  for x+y operation the output result is  00000000. 

VI. CONCLUSION 

The design has been implemented and easily seen in the Xilinx ISE Design Suite 13.2 window as waveform. 

Processor has been designed and implemented in hardware on Xilinx Spartan 2E FPGA. The design has been achieved 

using VHDL and simulated with ModelSim. Digilent Spartan 2E development board has been used for the hardware 

part. This paper has presented a small and easy to understand processor developed using VHDL. It executes all the 

instructions in one clock cycle, including jumps, returns from subroutines and external accesses. The assembler of this 

processor is full of macros that extend the native instruction set to facilitate low level programming. 

 

REFERENCES 

[1] Kui Yi., WuHan, Yue-Hua Ding,―32 Bit Multiplication And Division ALU Design Based On RISC Structure‖ International Joint Conference 

on Artificial Intelligence, pp. 761 – 764, 25-26 April 2009. 

[2] Ryszard Gal, Adam Golda, Maciej Frankiewicz, Andrzej Kos, ―FPGA implementation of 8-bit RISC Microcontroller for Embedded System‖ 
18th International Conference on MIXDES, pp. 323-328, 16-18 June 2011. 

[3] Brunelli Claudio, Cinelli Federico, Rossi Davide, Nurmi Jari, ―A VHDL model And implementation of a coarse grain reconfigurable 

coprocessor for a RISC core‖, 2nd Conference on Ph.D. Research in Microelectronics and Electronics Proceedings, pp. 229-232, 2006. 
[4] Samuel O. Aletan,‖An Overview of RISC Architecture‖, Proc. Symposium on  Applied Computing, vol2, pp.11-12, 1992. 

[5] Luker, Jarrod D., Prasad, Vinod B., ―RISC System Design in an FPGA‖, MWSCAS 2001, vol2, pp532-536, 2001. 

[6] S. de Pablo, J.A. Cebrián, L.C. Herrero ―A very simple 8-bit RISC processor for FPGA‖ FPGA world Conference 2006, November 2006. 
[7] Y.Takahashi, K.Takahashi, K.Shouno, M.Yokoy ama, K.Konta and M. Mizunuma, ‖Carry Propagation Free Adder/Subtracter Using Adiabatic 

Dynamic Cmos Logic Circuit Technology‖, IEICE  Trans. Fundamentals. vol.E86-A,no.6, pp. 1437-1444, June 2003. 

[8] John L. Hennessy, and David A. Patterson, ―Computer Architecture A Quantitative Approach‖, 4th Edition; 2006. 
 

http://www.ijareeie.com/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kui%20Yi.QT.&searchWithin=p_Author_Ids:37575841600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yue-Hua%20Ding.QT.&searchWithin=p_Author_Ids:37577206200&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6006988


ISSN (Print) : 2320 – 3765 
ISSN (Online) : 2278 – 8875 

 

     International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering  

      Vol. 2, Issue 4, April  2013 

 

Copyright to IJAREEIE                                                            www.ijareeie.com                                                                            1411          

[9] Brown, Richard B.; Lomax, Ronald J.; Carichner, Gordon A.;Drake, Alan J. ―A microprocessor design project in an introductory VLSI 

course‖ IEEE Trans. Educ., vol. 43,  pp. 353 – 361, Aug 2000. 
[10] Wayne Wolf, FPGA Based System Design, Prentice Hall, Pearson  Education India , 2005. 

[11] Raj Kamal ,Architecture, Programming, Interfacing and System Design, Pearson Education Dorling Kindersley (India), 2007. 

[12]  
 

BIOGRAPHY 

 

Deepak Kumar received the B.E. degree in Electronics and Communication Engineering from the Rajeev Gandhi 

Prodyogiki Visvavidhyalaya Bhopal, Madhya Pradesh, India in 2010. Currently, he is studying M. Tech (Electronics) 

in the Dept. of Electronics Engineering, School of Engineering and Technology, Pondicherry University, Puducherry, 

India. 
 

K.Anusudha received the B.E degree (2002) in Electronics &Communication from Madras University, M. Tech 

degree (2004) in communication system from Anna University, India. She is currently pursuing Ph.D . she is currently 

working as Assistant Professor in the Dept. of Electronics Engineering, School of Engineering and Technology, 

Pondicherry University, Puducherry, India. Her research interests include Digital data security, Digital watermarking 

and Forensic informatics. 

 

 
 

http://www.ijareeie.com/

