Research & Reviews: Journal of Pharmaceutical Analysis

RP-HPLC Method Development of Metformin in Pharmaceutical Dosage Form

Sowjanya P*

Department of Pharmaceutical Analysis, CSN Institute of Pharmacy, Bhimavaram, Andhra Pradesh, India

Research Article

Received date: 20/10/2015 Accepted date: 02/11/2015 Published date: 10/11/2015

*For Correspondence

Sowjanya P, Department of Pharmaceutical Analysis, CSN Institute of Pharmacy, Bhimavaram, Andhra Pradesh, India

E-mail: sowjin.p@gmail.com

Keywords Metformin; RP-HPLC method

The existing available literature reports do not show any stability indicative analytical method for the estimation of metformin in dosage form. Hence there is a need to develop and validate an analytical method to estimate metformin. Hence the present study aims is to develop and validate a suitable high precision and accurate analytical method for the simultaneous estimation of metformin in dosage form, by reverse phase high performance liquid chromatography (RP-HPLC). The main objective of the present work is to develop and validate a suitable high precision and accurate analytical method for the estimation of metformin in dosage form by reverse phase high performance liquid chromatography (RP-HPLC).

ABSTRACT

INTRODUCTION

Quantitative measurement was performed on a quaternary HPLC AGILENT series and HPLC pumps, with a 20 µl sample injection loop (automatic), and UV-Visible absorbance detector and photo-diode array detector. The output signal was monitored and integrated using EZ-Chrome software C-18 column was used for the separation. ^[1,2]

Reagents Used for the Study

Ortho phosphoric acid: AR grade

Acetonitrile: HPLC grade

Water: Milli-Q grade

Methanol: HPLC grade

Diammonium hydrogen phosphate: ARgrade

METHOD DEVELOPMENT

The objective of this experiment was to optimize the assay method for metformin based on the literature survey made.^[3,4].

The retension time was too long and the peak was non symmetric and they do not pass tailing factor in all the above 3 trails and the 4th trail was optimized.

Optimized Method

Chromatographic conditions

Flow rate: 1.0 mL per min Column: Thermosil C18 Detector wave length: 232 nm Column temperature: 25 °C Injection volume: 20 µl Run time: 6.0 min Diluent: mobile phase Mobile phase: 40:60 (water:acetonitrile) The retention time was found to be 2.064

It shows the good peak with good symmetry. Hence this method was finalized for the development of metformin.

Optimized Chromatographic Conditions for the Estimation of Metformin (Table 1 and Figure 1).

Preparation of Buffer

Weight 2.72 gm of potassium dihydrogen ortho phosphate in 1000 ml hplc water; adjust to pH 2.8 with ortho phosphoric acid.

S.NO	Parameter	Method
1	Mobile Phase	Water:acetonitrile(40:60)
2	Column	C18 column
3	Elution mode	Isocratic
4	Flow rate	1.0 ml/min
5	Injection Volume	20 µl
6	Retention Time	3.25
7	Temperature	25°C
8	Wavelength	232 nm

Table 1. Conditions for the estimation of Metformin.

Figure 1. Standard graph for estimation of metformin

Mobile Phase

Take HPLC Water 400 mL (40%) and 600 mL of Acetonitrile HPLC (60%) and degas in ultrasonic water bath and mix for 5 minutes and then filter through 0.45 μ under vacuum filtration.

Test Solution Preparation

Weigh 10 mg of metformin and transfer it in to 10 ml of volumetric flask and then add 5 ml of diluent and sonicate dissolve it completely and make up the volume to the mark with the same solvent (Stock solution). Pipette out the 0.4 ml of the above solution and transfer in to volumetric flask make up the solution by adding diluent. Mix the solution thoroughly and filter through by using 0.45μ filter.

Test Procedure

Inject 20 μ L of the standard, sample into the chromatographic system and measure the area for the metformin peak and calculate the%Assay by using the formulae.

System Suitability Requirements

Tailing factor: should not be more than 2.0%. Theoretical plates: should not be less than 2000.

RESULTS AND DISCUSSION

System suitability

For system suitability, two replicates of standard sample were injected and studied the parameters like plate number (N), HETP, peak symmetry of samples, %RSD of areas of reference solution

Evaluated the following system suitability parameters.

Theoretical plates & USP Tailing factor for standard

Acceptance criteria

1. The number of theoretical plates (N) for metformin peaks is NLT 2000.

2. The Tailing factor (T) for metformin peaks is NMT 2.0% (Table 2 and Figure 2).

Table 2. System suitability acceptance criteria.

System suitalibility					
	RT	Peak area	Theoritical plates	USP plate count	
Std	2.004	2098288	2679.5	1.8	
	2.006	2098252	2682.7	1.8	
Mean	2.005	2098270	2681.1	1.8	

Figure 2. System Suitability graph.

Precision

Preparation of stock solution

Weigh the 10 mg of metformin and transfer in to 10 ml of volumetric flask and add 7 ml of diluent dissolve it completely. By using same solvent make up the volume up to the mark.

Preparation of 40 μ g/ml solution

Pipette out 0.4 ml of the above stock solution and transfer into a 10 ml volumetric flask and dilute up to the mark with diluent. Mix thoroughly and then filter through 0.45 μ m filter.

Procedure

The standard solution was injected and measured the area in HPLC. This process is repeated to five times. The %RSD for the area of five injections was obtained to be within the specified limits (**Table 3**).

Injection	Area	RT
Injection-1	2109526	2.005
Injection-2	2123059	2.006
Injection-3	2104546	2.006
Injection-4	2107149	2.006
Injection-5	2121405	2.005
Injection-6	2126913	2.005
Average	2115433	
Standard Deviation	9462.0	
%RSD	0.45	

Table	3.	%RSD	for	the	area	of	ini	ected	sam	ples
10010	•••	101100			000	<u> </u>		00104	oun	p.00

Acceptance criteria

The% RSD for the area of five standard injections results should not be more than 2% (Figures 3a-3e).

Figure 3(f). Graph for channel 1 Injection 6.

Accuracy [5,6]

Preparation of stock solution

Weigh the 10 mg of metformin and transfer in to 10 ml of volumetric flask and add 7 ml of diluent and dissolve it completely. By using same solvent make up the volume up to the mark.

Preparation of 40 μ g/ml solution

Pipette out 0.4 ml of the above stock solution and transfer into a 10 ml volumetric flask and dilute up to the mark with diluent. Mix thoroughly and then filter through 0.45 μ m filter.

Preparation sample solutions

For preparation of 50% solution (With respect to Assay concentration)

Weigh the 05 mg of METFORMIN API and transfer in to 10 ml of volumetric flask and add 7 ml of diluent and dissolve it completely. By using same solvent make up the volume up to the mark and use it as stock solution. (with respect to Assay concentration).

Weigh the 10 mg of METFORMIN API and transfer in to 10 ml of volumetric flask and add 7 ml of diluent and dissolve it completely. By using same solvent make up the volume up to the mark and use it as stock solution.

Pipette out 0.4 ml of the above stock solution and transfer into a 10 ml volumetric flask and dilute up to the mark with diluent. Mix thoroughly and then filter through 0.45 μ m filter.

For preparation of 150% solution (With respect to target Assay concentration)

Weigh the 15 mg of METFORMIN API and transfer in to 10 ml of volumetric flask and add 7 ml of diluent and dissolve it completely. By using same solvent make up the volume up to the mark and use it as stock solution.

Pipette out 0.4 ml of the above stock solution and transfer into a 10 ml volumetric flask and dilute up to the mark with diluent. Mix thoroughly and then filter through 0.45 μ m filter

Procedure

Inject the standard solution, Accuracy -50%, Accuracy -100% and Accuracy -150% solutions.

Calculate the obtained Amount and added Amount for METFORMIN and also calculate the individual and mean recovery values (Table 4).

%Concentration (at specification Level)	Avg Area	Amount Added (mg)	Amount Found (mg)	% Recovery	Mean Recovery
50%	2159388	5.0	5.08	101.7%	
100%	4236167	10.0	9.97	99.7%	100.3%
150%	6339656	15.0	14.9	99.5%	_

Table 4. Individual calculations and mean recovery values.

Acceptance criteria

The% Recovery for each level should be between 98.0 to 102.0% (Figures 4).

Linearity: [7,8]

Preparation of stock solution

Accurately weigh and transfer 10 mg of METFORMINAPI sample into a 10 mL volumetric flask add about 7 mL of Diluent and sonicate to dissolve it completely and make volume up to the mark with the same solvent **(Table 5).** (Stock solution)

Figure 4. Graph shows accuracy acceptance criteria.

Table 5. Linearity correlation co efficient calculations.

S.No	Linearity Level	Concentration	Area	RT
1	I	20 µg/ml	1028416	2.002
2	II	30 µg/ml	1588963	2.006
3	III	40 µg/ml	2083770	2.009
4	IV	50 µg/ml	2580653	2.009
5	V	60 µg/ml	3187945	2.009
Correlation Coefficient			0.999	

Preparation of Level – I (20 μ g/ml):

0.2 ml of stock solution has taken in 10 ml of volumetric flask dilute up to the mark with diluents

Preparation of Level – I (30 µg/ml):

0.3 ml of stock solution has taken in 10 ml of volumetric flask dilute up to the mark with diluent.

Preparation of Level – II (40 µg/ml):

0.4 ml of stock solution taken in 10 ml of volumetric flask dilute up to the mark with diluent.

Preparation of Level – III (50 µg/ml):

0.5 ml of stock solution taken in 10 ml of volumetric flask dilute up to the mark with diluent.

Preparation of Level – IV (60 µg/ml):

0.6 ml of stock solution taken in 10 ml of volumetric flask dilute up to the mark with diluent.

Procedure

Inject each level into the chromatographic system and measure the peak area. Plot a graph of peak area versus concentration (on X-axis concentration and on Y-axis Peak area) and calculate the correlation coefficient **(Table 6).**

S.No	Flow Rate (ml/min)	System Suitability Results			
		USP Plate Count	USP Tailing		
1	0.7	2654.0	1.9		
2	0.8	2679	1.8		
3	0.9	2487	1.8		

Acceptance criteria

Correlation coefficient should be not less than 0.999 (Figures 5 and 6).

Robustness

As part of the Robustness, deliberate change in the Flow rate, Mobile Phase composition, Temperature Variation was made to evaluate the impact on the method.

a) The flow rate was varied.

Standard solution 30 µg/ml was prepared and analysed using the varied flow rates along with method flow rate (Table 7).

More flow (Figure 7)

JPA | Volume 4 | Issue 4 | December, 2015

Figure 5. Linearity correlation coefficient for different samples.

Less flow (Figure 8)

The Organic composition in the Mobile phase was varied.

Standard solution 30 μ g/ml was prepared and analysed using the varied Mobile phase composition along with the actual mobile phase composition in the method (Table 8 and Figure 9).

Assay Results (Table 8)

Figure 6. Linearity graph between the area and the concentration.

5.110	onange in organie et	mposition in the mobile phase	USP plate count	USP tailing			
1		10% less	2406	1.8			
2		Actual	2679	1.8			
3		10% more	2525	1.8			
Area							
	2500000 -						
	< 2000000 -						
	₩ ¥ 1500000						
	1000000						
	500000						
	0 -	· · · ·					
		20µg/ml 30µg/ml 40µg/ml 50µg/m	l 60µg/ml				
	Figure	CONCENTRATION					
	Figure	I. In robustness at more now rate the gr	apri snow.				
	0.26	-ter					
	0.24	ť.					
	0.20						
	0.18						
	⊋ 0.14-						
	0.12						
	0.08-						
	0.06						
	0.04						
	0.00						
	0.50	1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 Minutes	5.00 5.50 6.00				
	Name (min) (µV*sec) (µV) USP Tailing USP Flate Count 1 Metformin 1.790 1923408 267336 1.8 2487.7						
	Figure	8. In robustness at less flow rate the gra	aph show.				
Table 8. Assay results for metformin drug.							
Na	me	S.NO	Peak area of I	metformin			
		STD-1	2098288				
Stan	ndard	STD-2	220982	252			
		Average	20982	270			
		SMPL-1	21314	-59			
San	nple	SMPL-2	21351	.19			
Jun		SMPI-3		2141703			

Table 7. Use of organic composition in the mobile phase.

Change in organic composition in the mobile phase

System suitability results

2136094

101.70%

Figure 9: In robustness changing the organic phase compositions.

Acceptance criteriai

S No

The acceptance criterion for an assay was in between 97% to 103% (Figures 10a, 10b and 11a-11c).

Average

%Assay

Figure 10. Standard graph for metformin drug.

Figure 11. Graphs for metformin drug by using samples.

REFERENCES

- 1. Somnath DB, Sharangouda MM. Development and validation of stability indicating method for simultaneous estimation of cefixime and dicloxacillin using RP-HPLC method. JTUSCI. 2015
- 2. Deya S, Patrob SS, Babu NS, Murthy PN, Panda SK. Development and validation of a stability-indicating RP-HPLC method for estimation of atazanavir sulfate in bulk. JPA. 2011; 201; 12
- 3. Li M, Hou XF, Zhang J, Wang SC, Fu Q, et al. Applications of HPLC/MS in the analysis of traditional Chinese medicines (Review). JPA. 2011; 1(2): 81-91
- Khuda F, Iqbal Z, Shah Y, Ahmmad L, Nasir F, et al. Method development and validation for simultaneous determination of lumefantrine and its major metabolite, desbutyl lumefantrine in human plasma using RP-HPLC/UV detection. Journal of Chromatography B. 2014; 944: 114-122.
- 5. Nouruddin W, Gamala M, Abdelkawy A. Simultaneous determination of hyoscine N-butyl bromide and paracetamol in their binary mixture by RP-HPLC method. The Arabian Journal of Chemistry. 2013

JPA | Volume 4 | Issue 4 | December, 2015

- 6. Vishal J Mukesh CS, Jutab. Validated RP-HPLC method for determining the levels of bromhexine HCl, chlorpheniramine maleate, dextromethorphan HBr and guaiphenesin in their pharmaceutical dosage forms. The Journal of Drug Delivery Science and Technology. 2015
- 7. Kima DK, Parkb JB. Development and pharmaceutical approach for sustained-released metformin succinate tablet. J pharmSci. 2015; 30(A): 90-99
- 8. Kshama D, Satya N, Sarasija S. Development and validation of the liquid chromatographic method for simultaneous estimation of metformin, pioglitazone, and glimepiride in pharmaceutical dosage forms. The Journal of Drug Delivery Science and Technology. 2012; 3(1): 9-13