

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 11, November 2014

Copyright to IJIRCCE www.ijircce.com 6750

Security Architecture and Verification of Java
Bytecode

Ankit Tyagi, Abhishek Anand, Archana Bharti, Rashi Kohli

Scholar, Department of Computer Science and Engineering, Amity University, Greater Noida, India

Scholar, Department of Computer Science and Engineering, Amity University, Greater Noida, India

Scholar, Department of Computer Science and Engineering, Amity University, Greater Noida, India

Lecturer, Department of Computer Science and Engineering, Amity University, Greater Noida, India

ABSTRACT: Bytecode is a stack based java virtual machine instruction set that contains 202 instructions, not only it
provides architectural independence to java but also ensures that the code is secure and portable. It has widely evolved
into a topic of high importance , for the industrial organizations as well as academic institutions. The industry derive it's
interest because of the fact that bytecode is used specifically for websites and mobile device applications namely: cell
phones, metro cards, credit cards, internet banking etc where security is of prime importance. Moreover it allows
classes to load dynamically which results into an additional dare for those applications which contains formal methods.
Also, the poor structuredness of the code and the operand stack being pervasively present results in furthermore
challenges for the analysis of bytecode. This paper reviews the theoretical aspects of analysis, transformation,
verification and security of Java bytecode by presenting the existing ways of java bytecode verification and proposing
some optimizations.

KEYWORDS: JVM, Bytecode, JVML, ClassLoader, SecurityManager, JRE.

I. INTRODUCTION

Nowadays, Dynamic language applications that are written in java and other object oriented languages come alongside
a high level intermediate byte code. There are two clear cut advantages over other programs which produces direct
machine code. Firstly, it provides platform independency and secondly, we can execute it over target systems using
different set of local instructions to perform specific tasks without using much of the system resources. This unique
attribute provides byte code the ability to be ported across targeted platforms. Since, frequently executed areas of code
are quite inefficiently interpreted, the bytecode programs are dynamically compiled to translate different parts of byte
code program into codes that are capable enough to be executed on the local host machine. This bytecode is also
verified before execution keeping in mind certain boundary conditions which are laid well before by the code
consumer. Whether the code is typed well and fit for running on the java virtual machine or not is the duty of code
receiver as per the java virtual machine language(JVML) specification. This verification step assures that the code
written is safe and can be run without the breach of security which may result in buffer overflow. Another major
concern for Bytecode verifier is to prevent viruses from entering the system and making suspicious system calls in
order to compromise the system. These viruses are often introduced by foreign bytecode programs which are analyzed
for safety by the inbuilt java bytecode analyzer. This bytecode analyzer performs a check on the bytecode before it is
executed on the system. Prior studies have been done and experiments been performed by taking certain test cases in
order to check the dynamic compilation and verification of Byte code to ensure the safety and correctness of this
verification step and how well does the compilation produces local machine code for a particular bytecode fragment.

II. RELATED WORK

The Java Virtual Machine (JVM) is based on the canonical stack format. In stack, majority of the instructions pop out
the operators and operands from the stack, calculate and push back the result into the stack. Additionally, it is furnished
with a set of registers also known as local variables, which can be approached using “load” and “store” instructions that

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 11, November 2014

Copyright to IJIRCCE www.ijircce.com 6751

push the value of a given register on the stack or store the top of the stack in the present register. Majority of Java
compilers require registers to retain the values of source-level local variables and function parameters and also uses
temporary stack to hold the evaluation results of the expressions whereas the architecture does not support it. Stack and
registers are held upon through method calls and are a part of the activation record. Both the number of registers and
the stack space in the memory is used by the method which in particular is specified at the starting point, as a result on
method entry, activation record of right size is allocated. For the JVM to work properly the code should meet the
following conditions :-
 Correctness perspective: The argument types which are required by the instruction fulfill the expectations by
the instruction.
 No stack underflow or overflow: In stack underflow, no parameter can be poped out of the stack which is
empty and in stack overflow, no parameter can be pushed back into the stack which is full i.e. the size of the stack
declared and the parameters in the stack are equal.
 Code containment: In the method, the instruction counter should perpetually point at the intial starting
instruction code, it should neither point at the end nor in the middle of the method code.
 Initialization of the registers: Any method parameters cannot be loaded from an uninitialized registers so
atleast one load from a register should perpetually follow at least one store in this register; we can also say, that on
method entrance the registers which do not correspond to method parameters are not initialized.
 Initialization of Object: when an object of a class A is designed, any one of the initialization methods for class
A should be executed before the class object can be used.

Source Java code:

 static int fact(int x)
 {
 int res;
 for (res = 1; x > 0; x--) res = res * x;
 return res;
 }

Corresponding JVM bytecode:
method static int fact(int), 2 stack slots, 2 registers
0: iconst_ // push the integer constant 1
1: istore_1 // store it in register 1 (the res variable)
2: iload_0 // push register 0 (the x parameter)
3: ifle 14 // if negative or null, go to step 14
6: iload_1 // push register 1 (res)
7: iload_0 // push register 0 (x)
8: imul // multiply the two integers at top of stack
9: istore_1 // pop result and store it in register 1
10: iinc 0, -1 // decrement register 0 (x) by 1
11: goto 2 // go to step 2
14: iload_1 // load register 1 (res)
15: ireturn // return its value to caller

Figure 1: An example of JVM bytecode

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 11, November 2014

Copyright to IJIRCCE www.ijircce.com 6752

Figure 2: Java code execution process

III. VERIFICATION PROCESS FOR JVM

Java source program written by a programmer is initially compiled and converted into its corresponding bytecode
(.class file) representation. If the program is compiled using a different compiler other than the one stocked within java,
the JRE declares such code as "hostile" meaning, the code should be verified before execution by the Bytecode verifier.
This step ensures that every program that has been compiled from a third party compiler does not violate the safety
conditions set by the JVM. So, practically JVM does not even see the code till the time it has passed through a series of
tests conducted by the bytecode verifier. The byte code verifier is nothing but a mini theorem prover, which verifies
that the language ground rules are respected.

It checks the code by following certain steps:

By following the above mentioned steps, Java bytecode verifier makes sure that the code which is being passed to the
interpreter is in a fit state so as to be executed without producing a breach in security.

The code compiled is correctly following the format and the stacks present
should not overflow or underflow.

Illegal type conversion will not occur for instance , verifier will not allow
integers to serve as float values.

To make sure that the variables will not be allowed to access the out of
scope or restricted memory locations.

Bytecode instructions will have legally typed parameters.

All class members should maitain their state throughout the lifecycle, For
example, an object's potected data should always remain protected.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 11, November 2014

Copyright to IJIRCCE www.ijircce.com 6753

IV. JAVA SECURITY ARCHITECTURE

A model for Java security has been illustrated through the fig.3 Observe that both the bytecode in Java i.e., local
bytecode and unreliable bytecode (applet) must pass the verifier. Later, the invoking of class loader takes place that
determines when and in which manner applets can load the classes. In addition to this, class loader also creates
partition for namespace and it makes sure that remaining runtime environment should not be affected by the single
applet. At last the verification of runtime is performed by Security Manager to make a check on all the methods which
defines a new class loader or seeks permission for I/O or access for network etc.(dangerous method).

Figure 3: Java Security Model

Java Class Loader
An abstract class called ClassLoader defines the class loader in java programming language. The policies for loading
java classes into the runtime environment can be done by using the Class Loader as an interface.
 The overall use of class loader are:

 Class loader dynamically loads the java classes into Java Virtual Machine as class loader is the part of Java
Runtime Environment.
 In a simple manner, a flat namespace of body of class is created by class loader, which is referenced by the
name of a string.
 A class loader locates the libraries ,reads the contents of library and then loads the classes which are contained
inside the libraries
 The parent class loader avoids the applets from invoking methods ,which are part of other class loaders.
The running JVM(i.e., the java Runtime environment(JRE) in execution),allows more than one Class Loaders with
their own namespace, to get activated at one time, and then JVM groups the classes(e.g. local or global) on the basis of
their origin by the allowance of the namespace. This figures out that what are the divisions of Java Runtime
Environment (JRE),that can be accessed or can be changed by the applet. Moreover by restricting the namespace the
unreliable applets can be prevented from getting access of additional machine resources (e.g. topical files)

Java Security Manager
The methods present in SecurityManager(basic part of Java Security Model) are called to check various operations
performed by different codes to distinguish between reliable and unreliable code and thereafter the SecurityManager
disallows most of the tasks requested by unreliable code. The work of exemplifying desired policies for security can be
done by using the subclass of SecurityManager

The SecurityManager provides an extremely flexible and powerful mechanism for conditionally allowing access to
resources Some of the Security Manager’s duties include :
 All Socket transformations are managed by SecurityManager.
 Guarding secured resources (e.g. files, personal data etc) from getting accessed in unauthorized manner
 Preventing the new class loader from getting installed.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 11, November 2014

Copyright to IJIRCCE www.ijircce.com 6754

 To maintain the integrity of the Thread.
 Controlling access to group of classes i.e. java packages.

Before the execution of any kind of dangerous operation, all methods which are part of basic Java libraries (i.e.,
Given by Oracle corporation) consult the Security Manager for ensuring compliance .
The security manager also looks after the potential suspicious calls to the native operating system which works below
JVM. Figure 4 illustrates this feature of Java Security Manager.

Figure 4: Security Manager keeping tab on suspicious calls to OS.

V. PROPOSED JAVA BYTECODE VERIFICATION ALGORITHM

Keeping in view the existing java virtual machine bytecode verification algorithm, we propose the following algorithm
that tries to solve the performance issues faced by the existing algorithm.
start←1
While start=1
{
start←0
for each ‘k’ in all the steps of a function
{
if ‘k’ is changing then
{
start←1
verify if local variable's states and stack matches with state of ‘k’
calculate new state after checking ‘k’
for every ‘m’ in all the steps prior to ‘k’
{

if present state of ‘m’≠ new state out from’k’

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 11, November 2014

Copyright to IJIRCCE www.ijircce.com 6755

{
Let the state successor of ‘k’ as the new entry for ‘m’
Mark ‘k’ as it is changed
}}}}
The algorithm contains a number of optimizations in order to reduce the number of iterations which intern reduces the
time taken for the verification process of the java bytecode.

VI. CONCLUSION AND FUTURE WORK

Though a lot of prior work exists in the technique of Java bytecode verification yet majority of the work surveyed in
this paper lead us to the exact enlightenment of what bytecode and it's verification is and how it is performed to curb
security breaches. Upon the analysis of the algorithm we found out that for shorter programs the overall effort seems to
be the quickest while for average case programs this effort seems to increase a bit but for larger program size this effort
seems to take the longest. This observation clearly states that the verification time is directly proportional to the size of
the java program. Taking due note of the observations and characteristic behaviors that are closely analyzed, we
conclude this paper by highlighting a largely open question which remains, whether bytecode verification can go
beyond basic type safety and initialization properties, and statically establish more advanced properties of applets, such
as resource usage and reactiveness which can be defined as bounding the running time of an applet between two
interactions with the environment.

ACKNOWLDGEMENT

We would like to express our special thanks to our guide Ms. Rashi Kohli for her constant support and guidance
without whom this work wouldn't have seen the light.

REFERENCES

1. Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calculus of dependency. In 26th symposium Principles of

Programming Languages, pages 147–160. ACM Press, 1999.
2. David Basin, Stefan Friedrich, and Marek Gawkowski. Bytecode verification by model checking.
3. Journal of Automated Reasoning. Special issue on bytecode verification (this issue).
4. Yves Bertot. Formalizing a JVML verifier for initialization in a theorem prover. In Proc. Computer Aided Verification (CAV’01), volume

2102 of Lecture Notes in Computer Science, pages 14–24. Springer-Verlag, 2001.
5. Pascal Brisset. Vers un vérifieur de bytecode Java certifié. Seminar given at Ecole Normale Supérieure, Paris, October 2nd 1998, 1998.
6. Klaus Brunnstein. Hostile ActiveX control demonstrated. RISKS Forum, 18(82), February 1997.
7. Zhiqun Chen. Java Card Technology for Smart Cards: Architecture and Programmer’s Guide
8. Gennady Chugunov, Lars Åke Fredlund, and Dilian Gurov. Model checking multi-applet Java Card applications. In Smart Card Research

and Advanced Applications Conference (CARDIS’02), 2002.
9. Alessandro Coglio. Simple verification technique for complex Java bytecode subroutines. In 4th ECOOP Workshop on Formal Techniques for

Java-like Programs, 2002. Extended version available as Kestrel Institute technical report.
10. Alessandro Coglio. Improving the official specification of Java bytecode verification. Concur- rency and Computation: Practice and Experience,

15(2):155–179, 2003.
11. Richard Cohen. The defensive Java virtual machine specification. Technical report, Computational Logic Inc., 1997.
12. Stephen N. Freund and John C. Mitchell. A type system for the Java bytecode language and verifier. Journal of Automated Reasoning. Special

issue on bytecode verification (this issue).
13. Stephen N. Freund and John C. Mitchell. A formal framework for the java bytecode language and verifier. In Object-Oriented Programming

Systems, Languages and Applications 1999, pages 147–166. ACM Press, 1999.
14. Koushal Kumar, Ashwani Kumar Verification of Bytecode in a Virtual machine, IJARCSS, Volume 3,Issue 3, pp. 127-130, March 2013.
15. Xavier Leroy Java bytecode verification: algorithms and formalizations, Journal of Automated Reasoning, special issue on bytecode

verification (this issue).
16. Executive Summary. Secure computing with Java: now and the future, 1998.
17. Li Gong. Java security: present and near future, IEEE Micro, 17(3):14-19, May/June 1997.
18. T. Lindholm and F. Yellin. The Java Virtual Machine Specification, Addison-Wesley, 1996

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 11, November 2014

Copyright to IJIRCCE www.ijircce.com 6756

BIOGRAPHY

Ankit Tyagi is a B.Tech student in the department of computer science & engineering, Amity Greater Noida. His
research interest includes machine learning, Big Data, Java and encryption techniques.

Abhishek Anand is a B.Tech student in the department of computer science & engineering, Amity Greater Noida . His
research interest includes programming languages, data mining, operating systems.

Archana Bharti is a B.Tech student in the department of computer science & engineering, Amity Greater Noida . Her
research interest includes Operating systems, Distributed systems, cloud computing, java.

Rashi Kohli is a lecturer in the Department of Computer science & Engineering, Amity Greater Noida, Uttar Pradesh.
She received her M.Tech degree in Computer science & Engineering from Amity University, India. Her research
interests include Cryptography, network security and software engineering domain.

