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Abstract: In this article power series method, as well-known method for solving ordinary differential equations, has 
been employed to solve linear systems of first order differential equations. Theoretical considerations and convergence 
of the method for these systems are discussed. Some examples are presented to show the ability of the method for such 
systems. 
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I. INTRODUCTION 
 
A linear system of first order differential equations can be considered, as: 
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With initial conditions 00)( xtx  , 00 )( yty   . 

Where x, y are unknown functions and x , y  represent the first derivative of them respect to independent variable t and 

also coefficients iA , iB , iC , 2,1i  are known functions. 
The systems of this type having the greatest significance in both pure and applied mathematics are beyond the reach of 
elementary methods and can only be solved by means of power series.  

Definition 
The 0t called an ordinary point of system (1), if all coefficient functions be analytic at 0t .[1] 
Theorem 
Let 0t be an ordinary point of the system (1) and let 0x  and 0y  are be arbitrary constants. Then there exist unique 

functions )(tx  and )(ty that are analytic at 0t  , are solutions of (1) in a certain neighborhood of this point, and satisfy 

the initial conditions 00 )( xtx  and 00 )( yty  . Furthermore, if the power series expansions of iA , iB , iC , 2,1i  

are valid on an interval ),( 00 RtRt  , 0R , then power series expansions of these solutions are also valid on the 
same interval. 
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Substituting from )2(  and )3( into (1) we get, 
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By comparing the coefficients of the degree on both sides we have  
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Let r be a number such that Rr 0 . Since the series )3(  converge for 0trt  , and the terms of  convergent 

series approach  zero and therefor bounded, there exists a constant 0M  such that  n
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Using these inequalities in (4),we find that  
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We now define |}||,max{| 000 yxz   and 1nz  for 0n  by 
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Hence 11 ||   nn zx , 11 ||   nn zy  .Moreover  
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comparison test, the series (2) also converge for rtt  || 0 . Since r was an arbitrary positive number smaller than R, 

we conclude that series (2) converge for Rtt  || 0  and the proof is complete. 

 

 
By respect to above theorem it is sufficient to consider the solution as (2) and calculate the coefficients by following 
relations:  
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We shall solve these systems of equations with power series method and prove the convergency of solutions[2,3]. 

Examples 

In this part we present some examples. These examples are considered to illustrate the method. 
Example 1 

In this example we want to find the solution of  








tyxy
ytxx




 

With initial conditions 0)0(,1)0(  yx .  

By initial conditions and (2), let us 





0

)(
n

n
ntxtx  






0

)(
n

n
ntyty  

By (5), we have:  
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Hence the exact solution are 1)( tx , tty )(  

Example2. Consider the following linear system of differential equations ,with initial conditions x(0)=0, y(0)=0.    
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By initial conditions and (2), let us   

























0

0

)(

)(

n

n
n

n

n
n

tyty

txtx

         . 

 By (5), we have  
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Hens exact solutions are ,)( ttx  2)( txy   

Example3. Consider the following linear system of differential equations ,with initial conditions 
0)0(,1)0(  yx . 
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by(5), we have 
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Hence exact solutions are  
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II. CONCLUSION 

Power series method has been known as a powerful device for solving second order linear differential equations. Here 
we used this method for solving linear system of first order differential equations. The convergency of solutions has 
been shown. We present three examples and as it shown this method has the ability of solving such systems. 
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