
Volume 5, No. 1, January 2014 

Journal of Global Research in Computer Science 

RESEARCH PAPER 

Available Online at www.jgrcs.info 

© JGRCS 2010, All Rights Reserved                                                                                                                                                                                                    8 

STRING MATCHING RULES USED BY VARIANTS OF BOYER-MOORE 

ALGORITHM 

Jamuna Bhandari
*
,
 
Anil Kumar 

IEEE Student member*, IEEE Senior Member 

Department of Computer Science and Engineering, Manipal University Jaipur, Rajasthan 

bunu17_bhandari@yahoo.com, dahiyaanil@yahoo.com 

Abstract: String matching problem is widely studied problem in computer science, mainly due to its large applications used in various fields. In 

this regards many string matching algorithms have been proposed. Boyer-Moore is most popular algorithm. Hence, maximum variants are 

proposed from Boyer-Moore (BM) algorithm. This paper addresses the variant of Boyer-Moore algorithm for finding the occurrences of a given 

pattern P within the text T.  

INTRODUCTION 

String matching algorithms [1][2] are one of most 

commonly used algorithms for Medical science, Network 

Security, Image Processing etc. The effectives of the string 

matching algorithms are measures in terms of time and 

space complexities. Time and space complexity [3] is 

calculated in two phases preprocessing phase and searching 

phase of algorithms. Preprocessing phase is calculated for 

the pattern P, which needs to be searched for (a) to check 

repeated characters within the pattern P, (b) to check unique 

characters within the pattern, (c) to check the position of 

repeated character. Preprocessing phase calculates the 

values that are later used in searching phase. It has been 

found by Lee[4] that most of the string matching algorithms 

are based on some rules. These rules have been analyzed in 

details and correlation has been found among each these 

rules by Jamuna et al [5]. This paper focuses on variants of 

BM algorithms based on these rules since maximum variant 

has been proposed from BM algorithms among all the 

original algorithms. 

 

The organization of paper is as section 2 discussed the 

overview of BM algorithm. Section 3 discussed the variants 

of BM algorithms with rules used by them and then finally 

concludes with section 4. 

OVERVIEW OF BOYER-MOORE ALGORITHMS 

In 1977, R. S Boyer and J. S Moore [2] designed fast linear 

string searching algorithm. The comparison of the pattern 

with the text is done from right to left. BM algorithm is very 

popular and mostly used string matching algorithm and 

follows the rules of exact string matching techniques [4][5].  

 

Rules of exact string matching algorithms are the 

mechanisms used to search for the pattern/string within the 

text. The Boyer-Moore algorithm constructs two 

preprocessing table. One is for Boyer-Moore Bad characters 

(BMbc) and another for Boyer-Moore good suffix (BMgs).  

 

Then pattern is shifting based on preprocessing table values 

for BMbc and BMgs. For pattern searching phase it is found 

that Boyer-Moore algorithm observations are categorized 

into two shifting process BMbc and BMgs.  

BMbc shifting: 

Case 1: If mismatches at the very first character of pattern P 

(m
th 

position’s char) with the corresponding character of text 

T. Also mismatch character of text T also does not appears 

in pattern P then shift the pattern with pattern length m. as 

shown in figure 1(a).  

 
This shifting becomes same as shifting in suffix to prefix 

(Rule-1) Shift as if no suffix found in pattern P.  So Boyer-

Moore’s first observation shift is based on Rule-1 of exact 

string matching algorithm.  

 

Case 2: If the last m' chars of pattern P matches with the 

corresponding m' characters of text T then mismatches 

occurs after m' characters then move pattern by length (m- 

m') as shown in figure 1(b).  

 

 
 

This shifting becomes same as shifting of substring 

matching rule (Rule-2) shift as if substring does not found in 

pattern P.  So Boyer-Moore’s 3a observation shift is based 

on Rule-2 of exact string matching algorithm.  



Jamuna Bhandari et al, Journal of Global Research in Computer Science, 5 (1), Jaunary 2014, 8-11 

© JGRCS 2010, All Rights Reserved                                                                                                                                                                                                    9 

BMgs shifting 

Case 1: If mismatches at the very first character of pattern P 

(m
th

 position’s char) with the corresponding character of text 

T but mismatch character of text T also appears in pattern 

Pat position i
th 

then shift the pattern by (m-i)
th

 number. 

Where, i is the position of matched char in pattern P.as 

shown in figure 2(a). 

 
 

This shifting becomes same as shifting done as per bad-char 

rule (Rule-2.1) Shift and 1-suffix rule (Rule-2.2) shift, as if 

mismatch char found in pattern P.  So Boyer-Moore’s first 

observation shift is based on Rule-2.1 and 2.2 of exact string 

matching algorithm.  

 

Case 2: If the last m' chars of pattern P mismatches with the 

corresponding m' characters of text T but m' characters 

reoccurs in pattern P then shift the pattern by aligning  the 

matched chars of text and pattern as shown in figure 2(b). 

 

 
 

This way BM algorithm introduced the four ways  for This 

shifting becomes same as shifting done as per substring 

matching rule (Rule-2) Shift and 1-suffix rule (Rule-2.2) 

shift, as if mismatches m' characters found in pattern P.   

VARIANTS OF BOYER-MOORE ALGORITHM 

Based on Boyer-Moore pattern searching methods, many 

variants have been introduced. The most popular and 

effectively used variants of Boyer-Moore algorithms are 

Horspool algorithm, Zhu Takaoka algorithm, Quick search 

algorithm, Tuned BM algorithm, Reverse Cloussi  

algorithm, Raita Algorithm, Fast search algorithm, Forward-

fast-search algorithm. 

 

This section discussed the working procedure of variants 

algorithms. This includes the rule followed by the variants 

and complexities of preprocessing and searching phase are 

also mentioned. (Wherein calculated complexities, m is the 

length of the pattern, n is the length of the text T and σ is the 

number of alphabets in pattern P). 

a. Horspool algorithm: Horspool[6] proposed variant of 

Boyer-Moore Practical fast searching in strings in 

1980uses Rule-2.2. 

Working Principal of Horspool algorithm: 

This algorithm implements the concept of bad character. 

Horspool scan the text T with corresponding pattern P from 

right to left. If mismatch occurs (found bad character) at any 

position of pattern then search the reoccurrence of only the 

first character of text window (from right) within the pattern 

P. This shows Horspool applies the 1-suffix rule (Rule-2.2) 

shift. The Horspool algorithm improved the Boyer-Moore 

algorithm by addressing the occurrence table (preprocessing 

table) to compute the values of the reoccurrences of 

characters.  

Complexities of Horspool algorithm: 

Horspool shows preprocessing phase with O(m+) time 

complexity and O() space complexity; searching phase in 

O(mn) time complexity.  

a. The Zhu Takaoka algorithm: Zhu-Takaoka proposed 

an algorithm [7] “On improving the average case of 

the Boyer-Moore string matching algorithm, 1987”, 

uses Rule 2.  

Working principle of Zhu-Takaoka(ZT): 

The comparison in ZT algorithm performs scanning of 

pattern and text in similar manner as Boyer-Moore 

algorithm from right to left. The Zhu-Takaoka uses good 

suffix rule, since it search 2-substing (2-substring contains 

two characters, one should be mismatch char followed by a 

match char). In Zhu-Takaoka algorithm whenever a 

mismatch or a complete match occurs, it select the 2-

substring in T and search for the reoccurrence of 2-substring 

within the pattern P. If matched found or not found, shift 

pattern as per Rule-2.  

Complexities of ZT algorithm: 

The ZT algorithm construct 2Dbad char preprocessing table 

since it computes for the pair of characters. The 

complexities in preprocessing phase of ZT is O(m+2
) time 

and space complexity whereas searching phase in O(mn) 

time complexity. 

a. Quick search algorithm: Daniel M. Sunday proposed 

a new algorithm [8] ‘a very fast substring search 

algorithm’, 1990 uses Rule-2.2.  

Working Principle of Quick Search algorithm: 

The Quick-Search algorithm is also known as Sunday 

algorithm, this is one of very simple variation of fast 

Horspool algorithm. After each attempt in Sunday 

algorithm, the shift is computed according to the character 

which immediately follows the current window of the text T.  

This algorithm does not depended on scanning order of the 

pattern like in KMP or BM algorithm. Sunday computes the 

bad char for the pattern string shift at each stage and follows 

1-suffix shift. This is a simple and fast algorithm because it 

quickly debugged and quickly executed.  

Complexities of Quick Search algorithm: 

Preprocessing phase in Sunday algorithm as O(m+) time 

and O() space complexity; searching phase is O(mn) time 

complexity. 



Jamuna Bhandari et al, Journal of Global Research in Computer Science, 5 (1), Jaunary 2014, 8-11 

© JGRCS 2010, All Rights Reserved                                                                                                                                                                                                    10 

a. Tuned BM algorithm: Hume A. and Sunday D.M. 

proposed [9] “Fast string searching”, 1991 using Rule-

2.2.  

Working principle of Tuned BM: 

Tuned BM algorithm is also based on bad char concept and 

shifting is done according to 1-suffix shift. Whenever 

mismatch occurs it looks for presence 1-suffix character 

within the pattern and shift is done with the nearest matched 

found. 

Complexities of Quick Search algorithm: 

Preprocessing phase in TuBMbc O(m+ σ) time complexity 

and O(σ)is space complexity, searching phase in O(mn) time 

complexity.  

a. Reverse Cloussi: Colussi, L proposed [10] “Fastest 

pattern matching in strings”, 1994 using Rule-1 and 

Rule-2. 

Working principle of Reverse Colussi algorithm: 

The Reverse Colussi algorithm is in the spirit of the original 

Colussi Algorithm, which is one of the variant of KMP 

algorithm but Reverse Cloussi modified the bad character 

rule from matching a pair of characters. Reverse Colussi 

algorithm divides the pattern into two halves with special 

position and non-special position. Special position allows 

smaller number of skip. The Reverse Colussi algorithm 

routes the special position first. Special position allows the 

smaller number of steps to shift than non-special points. A 

special position follows theRule-2 for shifting, for any 

substring (according to rule-2) in Text T finds a nearest 

substring within the pattern P. If substring found then shift 

the pattern P in such a way that the two substring chars align 

correspondingly otherwise, define a new partial text 

window. For non-special positions, Rule-1 (suffix to prefix 

rule) is used for shifting of pattern, there must be suffix of 

the text window matched with the prefix of the pattern P. 

Complexities of Reverse Cloussi algorithm: 

Reverse Cloussi preprocessing time and space complexity is 

shown as O(m+). Searching phase time complexity is 

O(mn.) 

a. Raita Algorithm: T. Raita proposed an algorithm [11] 

“Tuning the Boyer-Moore-Horspool string searching 

algorithm”, 1994 uses Rule-2.2. 

Working principle of Raita algorithm:  

Raita algorithm is a simple modification of Horspool 

algorithm. Raita first compare the last character of text 

window T with the last character of the pattern P, and then 

compare the first characters of text and pattern and the 

middle characters. If they match, then compare other 

characters from left to right. If mismatch occurs, slide the 

window by the 1-suffix rule.  

a. Complexities of Raita algorithm: The preprocessing 

time complexity of Raita is O(m+), space complexity 

is O() and searching time complexity is O(mn). 

b. Fast search (FS) algorithm: Cantone D and Faro S. 

designed [12] “A new efficient variant of the BM 

string matching algorithm”, 2003 uses Rule-2.1 and 

Rule 1. 

Working principle of FS algorithm: 

The FS algorithm is a fast pattern searching variant of the 

Boyer-Moore string matching. Fast search applied the bad 

character rule only if the mismatch char is the last character 

of the pattern, otherwise the good suffix rule is used. The 

observations [13] in which the Fast search algorithm carried 

out shifting of pattern are 

(a). Bad character leads to larger shift than good suffix if 

and only if a mismatch occurs immediately, while 

comparing the characters of pattern with the text 

characters.  

(b). Repeating the bad char rule until the last char of 

pattern[m-1] of the pattern is matched correctly against 

the text, and then apply the good suffix rule, at the end 

of matching  

 

Fast search is compared with other variants of BM 

algorithms such as the Horspool algorithm [6], Quick Search 

algorithm [8], Tuned BM algorithm [9], and Reverse Factor 

algorithms[13]. Fast Search algorithm meets the very good 

results, especially if the length of the patterns is short.  

Complexities of Fast-Search algorithm: 

Fast search algorithm the pre-computed bad-char and good 

suffix with time complexity O(m) and O(m+) since Fast 

search follows both the bad-char as well as good suffix. 

a. Forward-fast-search using rule: Another variant of 

the BM string matching [14] algorithm is Forward-

fast-search. 

b. Working principle of Forward Fast-Search: The 

method used in Forward-fast-search is same as the 

Fast-Search algorithm, but it is based on a modified 

version of the good suffix rule, forward good suffix 

refer to look forward character to calculate the larger 

shift.  

 

In forward good suffix, if first mismatched  found at i
th 

position of the pattern P, the forward good suffix applied to 

align sub text T with the character of rightmost occurrence 

in pattern P preceded by a char different from P[i]. If no 

such occurrence found then the backward good suffix rule 

introduced (i.e a shift increment which allow matching the 

maximum suffix of text T with a prefix of P.) 

Forward fast search algorithm obtained as same as Fast-

Search and Tuned BM algorithm. However Forward-Fast-

Search [16] implemented using the forward good suffix rule 

only. 

 

The Forward-fast-search also compared with the Horspool 

[6], Quick Search algorithm[8], Tuned BM algorithm[8], 

and Reverse Factor algorithms[13], Berry-Ravindran[15] 

and also with Fast-Search algorithm[12] itself.  

 

Over all it observed Forward-Fast-Search is one of best 

algorithm in practice. 

c. Complexity of forward good suffix: Forward good 

suffix needed a preprocessing table of length (m*) 

and gives complexity as O(m*).  

CONCLUSIONS 

This study concludes that each of the variant follows either 

the concept of bad character shift, good suffix shifts or both. 

After analyzing the proposed variants of BM algorithms, it 

is observed that most of the variant uses the concept of bad 



Jamuna Bhandari et al, Journal of Global Research in Computer Science, 5 (1), Jaunary 2014, 8-11 

© JGRCS 2010, All Rights Reserved                                                                                                                                                                                                    11 

character shifts since they initiate the maximum number of 

shifting with bad char concept. All the variants perform 

scanning of pattern from right to left except Quick search 

algorithm. Quick search algorithm does not depend on 

scanning order, scanning can be performed in any manner.  

It is also being studied most of the variants adopt the bad 

character rule and good suffix rule. The algorithms are 

compared in terms of efficiency of run-time, number of 

character compared.    

ACKNOWLEDGEMENT 

This work is  partially  supported  by HRD, Govt. of  Sikkim  

(India),  vide  notification  no. 166/SCH/EDN  2003,  Ref.  

No 82/SCH/EDN, issued on 20/7/2013. 

REFERENCES 

[1] Knuth, D. E., Morris, JR, J. H., and Pratt, V. R. 1977. Fast 

pattern matching in strings. SIAM J. Comput. 6, 1, 323–

350, 1977 

[2] Boyer, R. S. and Moore, J. S.1977, A fast string searching 

algorithm. Commun. ACM, 1977, 20, 762–772. 

[3] LivioColussi, ZviGalilt, Raffaele Giancarlo. On The Exact 

Complexity Of String Matching. CH2925-6/90/0000/01, 

IEEE,1990 

[4] C.  W.  Lu, C.  L.  Lu, R.C.T.  Lee, Exact String matching 

rules for algorithms”, 

http://alg.csie.ncnu.edu.tw/lecture_notes_stringmatching.p

hp.  

[5] Jamuna Bhandari and Anil Kumar, Analysis of Various 

Rules of Exact String Matching Algorithms, International 

Journal of Applied Research and Studies, 2278-9480 

Volume 2, Issue 10, 2013. 

[6] Horspool, R. N. 1980. Practical fast searching in strings. 

Softw. Pract. Exp. 10, 6, 501–506 

[7] Zhu, R. F. and Takaoka, T. 1987. On improving the 

average case of the Boyer-Moore string matching 

algorithm. J. Inform. Process. 10, 3, 173–177. 

[8] Sunday, D. M. 1990. A very fast substring search 

algorithm. Commun. ACM 33, 8, 132–142. University, 

Prague, Czech Republic, 16–28. Collaborative Report 

DC–99–05 

[9] Hume, A. and Sunday, D. M. 1991. Fast string searching. 

Softw. Pract. Exp. 21, 11, 1221–1248. 

[10] Colussi, L. 1994. Fastest pattern matching in strings. J. 

Algorithms 16, 2, 163–189 

[11] Raita, T. 1992. Tuning the Boyer-Moore-Horspool string 

searching algorithm. Softw. Pract. Exp. 22, 10, 879–884 

[12] Cantone, D. and Faro, S. 2003. Fast-Search: a new 

efficient variant of the Boyer-Moore string matching 

algorithm. In WEA 2003. Lecture Notes in Computer 

Science, vol. 2647. Springer-Verlag, Berlin, 247–267 

[13] Crochemore, M. et al, Speeding up two string matching 

algorithms. Algorithmica 12, 4/5, 247–267, 1994. 

[14] Cantone, D. and Faro, S. 2003b. Forward-Fast-Search: 

another fast variant of the Boyer-Moore string matching 

algorithm. In Proceedings of the Prague Stringology 

Conference ’03, Czech Technical University, Prague, 

Czech Republic, 10–24. 

[15] Berry, T. and Ravindran, S. 1999. A fast string matching 

algorithm and experimental results. In Proceedings of the 

Prague Stringology Club ’99, J. Holub and M. Sim ´anek, 

Eds. Czech Technical 

[16] Crochemore, M. and Lecroq, T. 2008. A fast 

implementation of the Boyer-Moore string matching 

algorithm. 

[17] Franek, F., J Ennings, C. G., and Smyth, W. F. 2007. A 

simple fast hybrid pattern-matching algorithm. J. Discret 

Algorithms 5, 4, 682–695 

 


