
ISSN (Print) : 2320 – 9798

ISSN (Online): 2320 – 9801

 International Journal of Innovative Research in Computer and Communication Engineering

 Vol. 1, Issue 4, June 2013

 Copyright to IJIRCCE www.ijircce.com 786

Verification Approach for ASIC Generic IP

Functional Verification
Bhavin Patel

1

PG Student, Dept. of VLSI and Embedded Systems, U. V. Patel College of Engineering, Ahmedabad, India
1

ABSTRACT:Managing Generic IP verification requires consideration of uncertainties & dynamic changes of

standard & specification during project execution. Such scenario requires well defined process which needs to be

followed throughout the project execution. A creative approach is required to make sure verification architecture is

flexible enough to adapt majority of the run time changes enabling faster turnaround time. This article demonstrates

guidelines based on real experience to tackle dynamics in Verification.

Keywords: Intellectual Property, Universal Verification Methodology, Physical Interface

I. INTRODUCTION

Generic IP may have multiple protocols support. It can be used with different industry standards of PHYs. It may have

wide range of frequency of operation with multiple clocks. It may have multiple interface support for register

configuration. It may contain number of timers to come out from Hazards condition. Generic IP may have functionality

to disable hardware interrupt as well as software interrupts. Verification approach towards evolving Generic Design IP

is discussed in detail which includes general processes and practices followed along with special considerations for

managing dynamics.

II. VERIFICATION FLOW

Major Verification tasks include Verify, report bugs, get bug fixes, verify & evaluate the coverage of verification as

shown in Figure 1.Number of iteration determines the time taken to close verification.Verification is less about tools

and more about verification engineers’ approach.Quality of verification depends upon:

 The quality of test plan

 The quality of test bench environment

 Effective way of test plan execution

A. Verification Plan

Verification Plan specifies how design will be verified (Approach), what will be verified (Features) and Sign-off

criteria (Checks). Verification test plan must be review with architect, designer & verification engineer. So that will

improve the quality of verification plan and also some design/architecture issues might be caught during the review.

Fig. 1. Verification Flow

B. Feature Extraction

It is very important to digest the Design Spec. and find out different features supported by Design IP to have an brief

idea about the use cases. Mainly feature extraction can be done on following parameters:

 Different functionality in design

http://www.ijircce.com/

ISSN (Print) : 2320 – 9798

ISSN (Online): 2320 – 9801

 International Journal of Innovative Research in Computer and Communication Engineering

 Vol. 1, Issue 4, June 2013

 Copyright to IJIRCCE www.ijircce.com 787

 Basic Functionality

 Configurations

 Concurrent functionality

 Cross verification of configuration/functionality

 Error conditions

 Stress conditions

 Use case scenarios

 Negative scenarios for security features

 Corner case scenarios (known/unknown)

 Multiple the frequencies/baud rate supported by the module

 All type of industry standard models which the module supports.

C. Verification Plan

The main aim of verification architecture should be to ensure any change in feature behaviour or addition doesn’t

shake up the entire architecture. The architecture should be planned in a way that any feature change or modification

can be absorbed with minimum change in the verification components. For such cases it is but obvious that execution

team adapts layered architecture with the help various methodologies like VMM, OVM or UVM. Also, third party

VIPs could be a big help in reducing the VE development at the same time adds flexibility to the execution team when

any architecture changes are encountered.

D. Methodology

With the tight schedules on all projects it is important to have a strong verification methodology which contributes

to First Silicon Success. Deploy methodologies which enforce full functional coverage and verification of corner cases

through pseudo random test scenarios is required. Also, standardization of verification flow is needed. Generic System

Verilog Universal Verification Methodology (UVM) based Reusable Verification Environment is required to avoid the

problem of having so many methodologies and provides a standard unified solution which compiles on all tools. The

main aim of development of this Generic and automatic verification environment is to develop an efficient and unified

verification environment (at IP/Subsystem/SoC Level) which reuses the already developed Verification components

and also sequences written at IP/Subsystem level can be reused at SoC Level both with Host BFM and actual Core

using Incisive Software Extension (ISX) and Virtual Register Interface (VRI)/Verification Abstraction Layer (VAL)

approaches.

E. Importance of Assertions and Checkers

Assertions are a means of formally specifying correctness properties of a design, and are expressed in high level

verification languages (HVLs). While HVLs differ from traditional hardware design languages, the new standards for

VHDL, as well as System Verilog, include full assertion languages—PSL and SVA, respectively. Assertions are

important as a type of formal documentation, but their real benefits are exploited when they can be processed by EDA

(Electronic Design Automation) tools. Running a simulation, for example, wherein the simulator understands the

assertions and flags their violations, greatly assists in debugging; however, the power of assertions cannot typically be

exploited outside the realm of software-based verification tools (simulators, model checkers).

III. VERIFICATION EXECUTION

A. Directed Verification

Directed verification plan is created to identify the must check features as per the specification. Directed tests are

written with specific type & sequence to be provided to the design. They are created for specific scenarios to be

verified. Testcases created as per the system use cases. Testcases targeted for connectivity verification. Directed Test

cases are suite of testcases which can be rerun to verify the functionality with the design changes in consistent &

predictable way.

B. Constraint Random Verification

In constraint random Verification constraints are added to randomization in such a way that the design limitations

are not hit. Constraint can be added in such a way that the uncovered areas are hit the most. It’s Very fast way of

achieving good functional coverage. Re-generating the failing condition becomes easier by adding constraints in such a

way that the failing condition is hit easily. Add/remove constraints incrementally.

http://www.ijircce.com/

ISSN (Print) : 2320 – 9798

ISSN (Online): 2320 – 9801

 International Journal of Innovative Research in Computer and Communication Engineering

 Vol. 1, Issue 4, June 2013

 Copyright to IJIRCCE www.ijircce.com 788

C. Erroneous Scenario Verification

Erroneous Scenario Verificationensures that your design can gracefully handle invalid input. The purpose of

Erroneous Scenario Verificationis to detect such situations and prevent design from going into deadlock state and also

to check error reporting mechanism. Also, it helps you improve the quality of your design and find its weak points.

D. Coverage Driven Verification Flow

How do we ensure all features are covered and Design is verified as per the specification? Close monitoring of

functional coverage from initial stage allows verification team to align & focus efforts in right direction for verification

sign off. Dedicated time and efforts need to be considered to make sure functional coverage is in aligned with the latest

feature list. This approach adds one more check on correctness of feature verification along with maintaining

traceability matrix. Ignoring functional coverage expectation updates can lead to functional coverage holes. Doing

cross check with traceability matrix would save time for coverage closure activity. To avoid manual efforts of tracking

and measurement and doing re-work on specification changes, a high degree of automation is again needed to extract

all features from specification and map it to the verification & coverage plan in verification environment.

Fig. 2. Coverage Driven Verification Flow

The code coverage monitoring and analysis becomes very helpful for the evolving IP verification. It allows design

team to see redundant code at the same time it would allow verification team to see any verification holes are there or

not. The code coverage report when analysed by both design team and verification team at the same time would lead to

use cases which may or may not be getting generated with randomization of the stimulus.

IV. CONCLUSION

It is well known fact that verification takes more than 70% of the time and effort in rolling out new Design IPs. If not

planned well then verification team can lose valuable time in less important activities during the execution. We have

tried to show simple steps which in reality saved lot of time and efforts. Also, a significant amount of time spent on

Verification can be saved when executing new versions of standard. How you plan, process, manage and execute

verification with proper architecture, flexible test benches, sanity check tests, tracking metrics with automation plays a

vital role in delivering a quality product on time.

V. ACKNOWLEDGMENT

I take this opportunity to express my deepest gratitude and appreciation to all those who have helped me directly or

indirectly towards the successful completion of this paper.

REFERENCES

[1]. D. Karlsson, P. Eles, Z. Peng, ‖Formal Verification in a Component Reuse Methodology‖, in Proc. ISSS, pp.156-161, 2002

[2]. Evans, A,‖ Functional verification of large ASICs‖, in Design Automation Conference, 1998. Proceedings , pp. 650 – 655,1998
[3]. Andreas Meyer ,‖Principles of Functional Verification ―,Kluwer Academic Publishers, London, pp.32-39

[4]. SasanIman,‖SystemVerilog Functional Verification‖, Electronic Engineering, pp. 150-155,2009
[5]. Universal Verification Methodology User Guide Version 1.1 by Accellera Systems

http://www.ijircce.com/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Evans,%20A..QT.&searchWithin=p_Author_Ids:37363784900&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5854
http://www.accellera.org/downloads/standards/uvm

