
Volume 3, No. 12, December 2012

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 8

VERYIFYING AND SUBSTANTIATING FUNCTIONS IN MIPS

Dr. Manoj Kumar Jain*1, Ms. Veena Ramnani2

*1 Associate Professor, Department of Computer Science, Mohan Lal Sukhadia, Udaipur (Raj.)

manoj@cse.iitd.ernet.in
2Research Scholar, Department of Computer Science, Mohan Lal Sukhadia, Udaipur (Raj.)

ramnaniv@yahoo.com

Abstract: Complexity of embedded system design is increasing day by day. An embedded system is a combination of hardware and software.

Embedded systems are broadly defined as systems designed for a particular application while meeting strict design constraint. In addition,

market competition and the increasing demand for electronic equipment are pushing designers to shorten the design cycles of new products.

There is a well known tradeoff between retargetability and code quality in terms of performance and code size when compared to the hand

optimized code. This is because when the design space is large, all possible target specific optimizations cannot be performed in that case. In this

paper we have demonstrated the importance of retargetable compiler.

The major contribution of this paper lies in design and development of retargetable compiler for MIPS, especially implementing functions.

Key Words: MIPS, Design Space Exploration (DSE), Retargetable Compiler, ASIC

INTRODUCTION

High-tech systems ranging from smart phones to printers,

from cars to radar systems, and from satellites to medical

imaging equipment contain an embedded electronic core

that typically integrates a heterogeneous mix of hardware

and software components. The resulting platform is often

distributed, and it typically needs to support a mix of data-

intensive computational tasks with event processing control

components. These embedded components more and more

often have to operate in a dynamic and interactive

environment. Moreover, not only functional correctness is

important, but also quantitative properties related to

timeliness, quality-of-service, resource usage, and energy

consumption. The complexity of today's embedded systems

and their development trajectories is thus increasing rapidly.

At the same time, development trajectories are expected to

produce high-quality and cost-effective products.

A common challenge in development trajectories is the need

to explore extremely large design spaces, involving multiple

metrics of interest (timing, resource usage, energy usage,

and cost). The number of design parameters (number and

type of processing cores, sizes and organization of

memories, interconnect, scheduling and arbitration policies)

is typically very large and the relation between parameter

settings and design choices on the one hand and metrics of

interest on the other hand is often difficult to determine.

Given these observations, embedded-system design

trajectories require a systematic approach that is automated

as far as possible.

DESIGN SPACE EXPLORATION

Embedded systems facilitate easy re-design of processor-

memory based systems. The designer can incorporate

modifications in the behavior and operation aspect of the

architecture late in the design stage. ASIP are a compromise

between the non-programmable ASICs and general purpose

processors (GPP).

ASIP design [1] [2] [3] [4] allow a wide range of memory

organizations and hierarchies to be explored and customized

for the specific embedded application. The ASIP designer is

faced with the task of rapidly exploring and evaluating

different architectural and memory configurations.

Furthermore, shrinking time-to-market has created an urgent

need to automatically generate compiler/simulator tool-kit.

The ASIP design has the following steps:

Application Analysis:

The application written in HLL is analyzed to find out

parameters like data types used, execution count of operators and

functions, life time of variables etc.

Architecture Design space exploration:

The performance of various architectures is estimated and a

suitable architecture satisfying the design constraints is selected.

There are two approaches for performance estimation:

a) Scheduler Based Approach: In scheduler based approach as

shown in Figure 3, the problem is formulated as a resource

constrained scheduling problem. The application is

scheduled to generate an estimate of the cycle count.

Figure 1: Scheduler based Approach

b) Simulator Based Approach: A retargetable compiler is

constructed for every architecture to be evaluated. This

compiler is used to generate code. As shown in figure

4, this generated code is given as input to a retargetable

simulator which is also designed for the same

Application(C) Profiler
Retargetable

Estimator

Architecture

 Description

Performance and

other estimates

Manoj Kumar Jain et al, Journal of Global Research in Computer Science, 3 (12), December 2012, 8-11

© JGRCS 2010, All Rights Reserved 9

architecture under evaluation. This simulator generates

the performance estimates and other statistics.

Figure 2: Simulator based approach

Instruction Set Generation:

The instruction set is generated for the selected target

architecture.

Code Synthesis:

Code synthesis is done using a retargetable code Generator

which will take application, the architecture template and

instruction set as inputs and generate code for the target

processor.

Hardware Synthesis:

The hardware is synthesized using the ASIP architectural

template and instruction set architecture.

Scheduler based approach for design space exploration is a

relatively new field, we shall be considering simulator based

approach for design space exploration. Retargetable

compilers are a promising approach for automatic compiler

generation. A compiler is said to be ‗retargetable‘ if it can

be used to generate code for different processor

architectures by reusing significant compiler source code.

This has resulted in a paradigm shift towards a language-

based design methodology using Architecture Description

Language (ADL) for embedded System-on-Chip (SOC)

optimization, exploration of architecture /compiler co-

designs and automatic compiler/simulator generation.

FUNCTION IMPLEMENTATION IN MIPS

Functions are perhaps the most fundamental unit of

programming, used in all of programming languages. It

gives us the simplest form of program abstraction. It

provides an interface (i.e., the prototype) and allows us to

use the function without knowing how it is implemented.

Thus, it makes sense that assembly languages must provide

the mechanism to implement functions. There are two ideas

behind a function

a. You should be able to call the function from anywhere.

b. Once the function is complete, it should return back to

the place that called the function.

Function calls are relatively simple in a high-level language,

but actually involve multiple steps and instructions at the

assembly level.

a. The program‘s flow of control must be changed.

b. Arguments and returning values are

passed back and forth.

c. Local variables can be allocated and destroyed.

Invoking a function changes the flow of program

twice:

a) Calling the function: Every time a function is

called, the CPU has to remember an appropriate

return address.

b) Returning from a function: When the function

execution is complete, the CPU has to restore the

return address in the Program Counter.

MIPS [5] [6] [7] uses the jump-and-link instruction jal to

call functions.

a) The jal saves the return address (the address of the next

instruction) in the dedicated register $ra, before jumping

to the function.

b) Jal is the only MIPS instruction that can access the value

of the program counter, so it can store the return address

PC+4 in $ra.

E.g. jal Fact

To transfer control back to the caller, the function just

has to jump to the address that was stored in $ra.

jr $ra

Functions accept arguments and produce return values.MIPS

uses the following conventions for function arguments and

results.

—Up to four function arguments can be ―passed‖ by placing

them in registers $a0-$a3 before calling the function

with jal.

—A function can ―return‖ up to two values by placing them

in registers $v0-$v1, before returning via jr.

FUNCTION IMPLEMENTATION IN OUR

COMPILER

Our compiler is capable of generating MIPS code for simple

programs [8] and now its functionality is being extended to

implement functions. The register conventions of MIPS

have been retained in our compiler as well. Registers $a0-

$a3 are used for passing arguments to the functions, $v0-

$v1 are used by the functions to return values from the

functions.Regsiters $s0-$s7 are used within the functions

for local variables.

When we program in C or C++ or Java, we are used to

calling functions with local variables. Each time we call a

function, a new set of local variables is created. This is why

recursive function calls work. Each recursive call has its

own copy of local variables and parameters (unless the

parameters are passed by reference). This makes it easier to

write functions in procedural languages.

When we program in assembly language, there is only one

set of registers used in the program. In effect, these registers

act like global variables. It's very easy to make a function

call, and think that after the function call is done, the

registers have remained unchanged. When we make a

function call, we have to assume that, unless convention

dictates otherwise, the function will clobber all the registers

we are using (except the stack pointer). Thus, if we call a

function, any values we have stored in a register could be

overwritten. After all, the function being called needs to use

registers too and there's only one set to work with.

We can keep these registers from being overwritten by a

function call, by saving them before the function executes,

Object

code

Architecture

Description Trace Data

Retargetable

Compiler

Retargetable

Simulator
Applicati

on (C)

Manoj Kumar Jain et al, Journal of Global Research in Computer Science, 3 (12), December 2012, 8-11

© JGRCS 2010, All Rights Reserved 10

and restoring them after the function completes. We have

used the convention that at the time of function call, the

compiler first checks which register have values which will

be required subsequently in the following blocks and then

saves them on the stack. These values are restored after the

control returns from the function. This is especially

important for nested functions.

The algorithm for implementing functions in our compiler is

as follows:

a. Check the function registers $s0-$s7 and free the

ones whose contents are dead or not live. If the

contents are live i.e. have ―next use‖ in the

upcoming block, save the contents on the stack.

b. Initialize function registers $s0-$s7 to empty

c. Place the arguments in the registers $a0-$a3

d. Branch to the assembly code of the function.

e. Execute the code

f. At the end place the return values in the registers

$v0-$v1

g. Branch to the return address stored in the register

$ra

h. Restore the contents of function registers $s0-$s7

from the stack

Each function, as it is running, will have a part of the stack

for its own use. This is called the stack frame. By

convention, the functions just use its part of the stack. The

exception is when the called needs to access arguments

passed by the caller. The arguments are considered part of

the caller's stack.

It may be possible for a function code to have more than one

stack frame. For example, recursive functions will have a

stack frame for each recursive call that's made. Functions do

not need to be recursive for there to be two or more stack

frames associated with the function.

VERIFYING AND SUBSTANTIATING THE

COMPILER

The assembly code generated for functions was functionally

verified with the help of MARS (MIPS Assembler and

Runtime Simulator). MARS [9] is an Education- Oriented

MIPS Assembly Language Simulator, developed by

University of Missouri state. MARS is an Integrated

Development Environment (IDE) controlled by a modern

GUI whose features include:

a. control of execution speed, including single step at

variable speed (slider bar controls the number of

instructions per second)

b. thirty-two registers visible at the same time, selectable

via tabbed interfaces,

c. ―spreadsheet‖ (WYSIWYG) modification of values in

registers and memory,

d. selection of data value display in decimal or

hexadecimal,

e. ―surfing‖ through memory using buttons to change

display to next/previous, stack location, global

partition, and the start of the memory segment,

f. an integrated editor and assembler as part of its IDE.

The quality of code can be judged by many parameters

memory access operations, cache hits and misses, code size,

cycle count, execution time, etc. The performance statistics

we have used is the code size.

Code size:

The code for the benchmarks was generated using the GCC

compiler [10]. The size of the code generated by our

compiler is much less than that generated by GCC. A

glimpse of the code generated by the two is given in the

table below. The code below has been generated for

initializing the array in ―insertion sort‖.

Table: 1

Code by Our Compiler Code by GCC

FL1 :

 li $s0,0

 li $s1,0

L2 :

 li $s2,10

 bge $s1,$s2,L3

 li $s3,4

 mul $s4,$s1,$s3

 add $s5,$a0,$s4

 li $s6,0

 sub $s7,$s6,$s1

 addi $s4,$s7,20

 sw $s4,($s5)

 lw $s4,($s5)

 add $s5,$s0,$s4

 move $s0,$s5

 add $s1,$s1,1

 b L2

L3 :

 move $v0,$s3

 jr $ra

fillarray:

 addiu $sp,$sp,-16

 sw $fp,12($sp)

 move $fp,$sp

 sw $4,16($fp)

 sw $0,0($fp)

 sw $0,4($fp)

 j $L4

 nop

$L5:

 lw $2,4($fp)

 nop

 sll $3,$2,2

 lw $2,16($fp)

 nop

 addu $4,$2,$3

 li $3,20

 # 0x14

 lw $2,4($fp)

 nop

 subu $2,$3,$2

 sw $2,0($4)

 lw $2,4($fp)

 nop

 sll $3,$2,2

 lw $2,16($fp)

 nop

 addu $2,$2,$3

 lw $3,0($2)

 lw $2,0($fp)

 nop

 addu $2,$2,$3

 sw $2,0($fp)

 lw $2,4($fp)

 nop

 addiu $2,$2,1

 sw $2,4($fp)

$L4:

 lw $2,4($fp)

 nop

 slt $2,$2,10

 bne $2,$0,$L5

 nop

 lw $2,0($fp)

 move $sp,$fp

 lw $fp,12($sp)

 addiu $sp,$sp,16

 j $31

 nop

It can be observed that the code generated by GCC contains

several load/store instructions. GCC compulsorily makes

use of frame pointer and stack pointer, a lot of programming

effort is involved in updating these pointers and accessing

memory through these pointers. As a result, the GCC

generates longer assembly code as compared to that of our

compiler. As far as the code generated by our compiler is

concerned, we have not used the frame pointer. Also, the

stack pointer is required only when we store values on the

stack. Lastly, the stack is required only when there are no

Manoj Kumar Jain et al, Journal of Global Research in Computer Science, 3 (12), December 2012, 8-11

© JGRCS 2010, All Rights Reserved 11

empty registers. We have used our own register allocation

algorithm[11], which helps us achieve fewer loads and

stores.

The comparison of code size in terms of number of lines

generated by our compiler and GCC is given in the table

below and also represented graphically in Figure 3.

Table: 2

Benchmarks Code Size (Our

Compiler)

Code Size (GCC

Compiler)

Matrix Multiplication 107 227

Insertion sort 108 267

Bubble Sort 99 231

LL1 66 172

LL5 67 161

LL12 52 141

Figure 3: Comparison of code size generated by our compiler and GCC

compiler.

It can be observed from the above table that the code

generated by our compiler is much smaller as compared to

that generated by GCC. The code size is in terms of line

count.

CONCLUSION

The functionality of an embedded system is divided into

hardware and software components. Synthesis of hardware

components involves designing a custom circuit for the

hardware portion of input application. Synthesis of software

component consists of designing a processor that is suited

for the software portion of the input application and

generating code that implements the functionality of the

software component on the designed processor. Short design

cycles and increasing embedded system complexity make it

impractical to perform manual processor architecture

exploration and code generation.

We have developed a retargetable compiler that can

generate code for MIPS32 architecture. The compiler is

capable of handling function calls and function return. The

code has been functionally verified and the quality of the

code has been checked for code size. We have shown that

the code generated by our compiler is better than that

generated by GCC compiler.

REFERENCES

[1]. M.K. Jain, Anshul Kumar, M. Balakrishnan and Anup

Gangwar: Customizing Embedded Processors for Specific

Applications, In proceedings of Recent Trends in Practice

and Theory of Information Technology, Proc. of NRB

Seminar, 10-11 January 2005, NPOL, Cochin, pp. 261-284

[2]. M.K. Jain, M. Balakrishnan, Anshul Kumar: ASIP Design

Methodologies: Survey and Issues, In proceedings of the

Fourteenth International Conference on VLSI Design,

2001, 3-7 Jan. 2001, Pages: 76-81

[3]. M.K.Jain, M.Balakrishnan and Anshul Kumar: Efficient

Technique for Exploring Register File Size in ASIP

Design', IEEE TCAD of VLSI, vol. 23, No. 12, pp. 1693-

1699, Dec. 2004.

[4]. Jain, M.K. and Ramnani, V., (2007) Challenges in

Retargetable Compiler Technology in ASIP Design, Indian

Engineering Congress

[5]. MIPS 32 Architecture for Programmers (2008) – Volume I:

Introduction to MIPS32 Architecture, Document Number:

MD00082, Revision 2.60

[6]. MIPS 32 Architecture for Programmers (2009) – Volume

II: Introduction to MIPS32 Architecture, Document

Number: MD00086, Revision 2.62

[7]. MIPS 32 Architecture for Programmers (2009) – Volume

III: Introduction to MIPS32 Architecture, Document

Number: MD00090, Revision 2.80

[8]. M.K.Jain and Veena Ramnani(2012), Developing a

retargetable compiler for MIPS32k and ARM7TDMI-S,

Journal of Global Research in Computer Science, Volume

3, No. 2, February 2012, ISSN-2229-371X

[9]. K.Vollmar and P.Sanderson (2006): MARS An Education-

Oriented MIPS Assembly Language Simulator,

SIGCSE‘06, March 1-5, 2006, Houston, Texas, USA.

[10]. GCC Homepage: http://gcc.gnu.org

[11]. M.K.Jain and Veena Ramnani (2011), Register Allocation

And Instruction Scheduling For An Efficient Retargetable

Compiler, International Journal of Advanced Research in

Computer Science, Volume 2, Issue 5,October 2011, ISSN

No. 0976-5697

0
50

100
150
200
250
300

C
o

d
e

 S
iz

e

Benchmarks

Comparison of code size generated by

our compiler and GCC

Code Size (Our
Compiler)

Code Size (GCC
compiler)

