
Volume 2, No. 5, April 2011

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2011, All Rights Reserved 86

XML MINING USING GENETIC ALGORITHM

Soumadip Ghosh1, Amitava Nag1, Debasish Biswas1, Arindrajit Pal1

Sushanta Biswas2, Debasree Sarkar2, Partha Pratim Sarkar2
1Academy of Technology, Hoogly – 712121, West Bengal, India.

soumadip.ghosh@gmail.com
2DETS, University of Kalyani, Kalyani, Nadia – 741235, West Bengal, India.

biswas.su@gmail.com

Abstract. In recent years XML documents have became very popular for representing semi-structured data and a standard
for data exchange over the web. Mining XML data from the web is becoming increasingly important as well. In general

frequent itemsets are generated from large data sets by applying association rule mining algorithms like Apriori, Partition,

Pincer-Search, Incremental, and Border algorithm etc., which take too much computer time to compute all the frequent

itemsets. By using Genetic Algorithm (GA) we can improve the scenario. The major advantage of using GA in the

discovery of frequent itemsets is that they perform global search and its time complexity is less compared to other

algorithms as the genetic algorithm is based on the greedy approach. The main aim of this paper is to find all the frequent

itemsets from XML database using genetic algorithm.

Keywords: Genetic Algorithm (GA), Extensible Markup Language (XML), Association Rule, Frequent itemset, Support,

Confidence, Data Mining.

INTRODUCTION

Large amounts of data have been collected routinely in the

course of day-to-day management in business,

administration, banking, the delivery of social and health

services, environmental protection, security and in politics.

Such data is primarily used for accounting and for

management of the customer base. Typically, management
data sets are very large and constantly growing and contain

a large number of complex features. While these data sets

reflect properties of the managed subjects and relations, and

are thus potentially of some use to their owner, they often

have relatively low information density. One requires

robust, simple and computationally efficient tools to extract

information from such data sets. The development and

understanding of such tools is the core business of data

mining. These tools are based on ideas from computer

science, mathematics and statistics. Mining useful

information and helpful knowledge from these large
databases has thus evolved into an important research area

[1, 2].

Data mining has attracted a great deal of attention in the

information industry and in society as a whole in recent

years, due to the wide availability of huge amounts of data

and the imminent need for turning such data into useful

information and knowledge. The information and

knowledge gained can be used for applications ranging from

market analysis, fraud detection, and customer retention, to

production control and science exploration.

Frequent pattern mining is an important area of Data mining

research. The frequent patterns are patterns (such as

itemsets, subsequences, or substructures) that appear in a
data set frequently. For example, a set of items, such as milk

and bread that appear frequently together in a transaction

data set is a frequent itemset. A subsequence, such as buying

first a PC, then a digital camera, and then a memory card, if

it occurs frequently in a shopping history database, is a

(frequent) sequential pattern. A substructure can refer to

different structural forms, such as subgraphs, subtrees, or

sublattices, which may be combined with itemsets or

subsequences. If a substructure occurs frequently, it is called

a (frequent) structured pattern. Finding such frequent

patterns plays an essential role in mining associations,
correlations, and many other interesting relationships among

data. Moreover, it helps in data classification, clustering,

and other data mining tasks as well.

The process of discovering interesting and unexpected rules

from large data sets is known as association rule mining.

This refers to a very general model that allows relationships

to be found between items of a database. An association rule

is an implication or if-then-rule which is supported by data.

The association rules problem was first formulated in [3]

and was called the market-basket problem. The initial

problem was the following: given a set of items and a large
collection of sales records, which consist in a transaction

date and the items bought in the transaction, the task is to

find relationships between the items contained in the

different transactions. A typical association rule resulting

from such a study could be “90 percent of all customers who

buy bread and butter also buy milk" – which reveals a very

important information. Therefore this analysis can provide

Amitava Nag et al, Journal of Global Research in Computer Science, Volume 2 No 5 2011

© JGRCS 2011, All Rights Reserved 87

new insights into customer behaviour and can lead to higher

profits through better customer relations, customer retention

and better product placements. The subsequent paper [4] is

also considered as one of the most important contributions

to the subject.

The web is rich with information. However, the data

contained in the web is not well organized which makes

obtaining useful information from the web a difficult task.

The successful development of Extensible Markup

Language (XML) [13] as a standard to represent semi-

structured data makes the data contained in the web more

readable and the task of mining useful information from the

web becomes feasible.

The widespread use of XML for representing data and

documents has urged the need to develop tools to efficiently

store, access and organize XML documents. With the

development of such semi-structured textual content, the

document nature is changing. XML documents usually have

a much richer representation than flat ones. They have a

logical structure. They are often composed of heterogeneous

information sources (e.g. text, metadata etc.). Another major

change with semi-structured documents is the possibility to

access document elements or fragments. The development

of classifiers for semi-structured content is a new challenge

for the Machine Learning (ML) and Information Retrieval
(IR) communities. A classifier for semi-structured

documents should be able to make use of the different

content information sources present in an XML document

and to classify both full documents and document parts.

RELATED WORK

Mining of association rules is a field of data mining that has

received a lot of attention in recent years. The main

association rule mining algorithm, Apriori, not only

influenced the association rule mining community, but it

affected other data mining fields as well. Apriori and all its

variants like Partition, Pincer-Search, Incremental, Border

algorithm etc. take too much computer time to compute all

the frequent itemsets. The papers [10, 11, 12] contributed a

lot in the field of Association Rule Mining (ARM).

Several encouraging attempts at developing methods for

mining XML data have been proposed. However, efficiency

and simplicity is still a barrier for further development.
Normally, pre-processing or post-processing is required for

mining XML data, such as transforming the data from XML

format to relational format. In this paper, an attempt has

been made to compute frequent itemsets from XML

database by applying genetic algorithm so that the

computational complexity can be improved.

ASSOCIATION RULE MINING (ARM)

Association Rule Mining aims to extract interesting

correlations, frequent patterns, associations or casual

structures among sets of items in the transaction databases

or other data repositories [8]. The major aim of ARM is to

find the set of all subsets of items or attributes that

frequently occur in many database records or transactions,

and additionally, to extract rules on how a subset of items

influences the presence of another subset. ARM algorithms

discover high-level prediction rules in the form: IF the

conditions of the values of the predicting attributes are true,

THEN predict values for some goal attributes.

In general, the association rule is an expression of the form

X=>Y, where X is antecedent and Y is consequent.

Association rule shows how many times Y has occurred if X

has already occurred depending on the support and
confidence value.

Support: It is the probability of item or item sets in the given

transactional data base:

Support(X) = n(X) / n

Where n is the total number of transactions in the database

and n(X) is the number of transactions that contains the item

set X. Therefore,

Support (X=>Y) = support(XUY).

Confidence: It is conditional probability, for an association

rule X=>Y and defined as confidence(X=>Y) =
support(XUY) / support(X).

Frequent itemset: Let A be a set of items, T be the

transaction database and σ be the user-specified minimum

support. An itemset X in A (i.e., X is a subset of A) is said

to be a frequent itemset in T with respect to σ, if

support(X)T ≥ σ.

The problem of mining association rules can be decomposed

into two sub-problems:

Find all sets of items (itemsets) whose support is greater

than the user-specified minimum support, σ. Such itemsets

are called frequent itemsets
.

Use the frequent itemsets to generate the desired rules. The

general idea is that if, say ABCD and AB are frequent

itemsets, then we can determine if the rule AB=>CD holds

by checking the following inequality

support({A,B,C,D}) / support({A,B}) ≥ τ

where the rule holds with confidence τ.

It is easy to find that the set of frequent sets for a given T,

with respect to a given σ, exhibits some important

properties–

 Downward Closure Property: Any subset of a
frequent set is a frequent set.

 Upward Closure Property: Any superset of an

infrequent set is an infrequent set.

The above properties lead us to two important definitions–

 Maximal frequent set: A frequent set is a maximal

frequent set if it is a frequent set and no superset of

this is a frequent set.

 Border set: An itemset is a border set if it is not a

frequent set, but all its proper subsets are frequent

sets.

Therefore it is evident from the above two dentitions that if
we know the set of all maximal frequent sets, we can

generate all the frequent sets. Alternatively, if we know the

Amitava Nag et al, Journal of Global Research in Computer Science, Volume 2 No 5 2011

© JGRCS 2011, All Rights Reserved 88

set of border sets and the set of those maximal frequent sets,

which are not subsets of any border set, then also we can

generate all the frequent sets.

The main association rule mining algorithm, Apriori, also

called the level-wise algorithm, makes use of the downward

closure property. As the name suggests, the algorithm is a

bottom-up search, moving upward level-wise in the lattice.

This algorithm uses two functions (candidate generation and

pruning) at every iteration. It moves upward in the lattice

starting from level 1 till level k, where no candidate set

remains after pruning [9].

The algorithm is proposed by R. Agrawal and R. Srikant in
1994 for mining frequent itemsets for Boolean association

rules [4]. The name of the algorithm is based on the fact that

the algorithm uses prior knowledge of frequent itemset

properties. The Apriori algorithm pseudo-code for

discovering frequent itemsets for mining is given below:

Pass 1
1. Generate the candidate itemsets in C1

2. Save the frequent itemsets in L1

Pass k
1. Generate the candidate itemsets in Ck from the

frequent
itemsets in Lk-1

a) Join Lk-1 p with Lk-1q, as follows:

insert into Ck

select p.item1, p.item2, . . . , p.itemk-1,

q.itemk-1

from Lk-1 p, Lk-1q

where p.item1 = q.item1, . . . p.itemk-2 =

q.itemk-2, p.itemk-1 < q.itemk-1

b) Generate all (k-1)-subsets from the

candidate itemsets in Ck

c) Prune all candidate itemsets from Ck

where some (k-1)-subset of the candidate
itemset is not in the frequent itemset Lk-1

2. Scan the transaction database to determine the

support for each candidate itemset in Ck

3. Save the frequent itemsets in Lk

Here a frequent itemset is an itemset whose support is

greater than some user-specified minimum support (denoted

Lk, where k is the size of the itemset) and a candidate

itemset is a potentially frequent itemset (denoted Ck, where k

is the size of the itemset). Apriori and all its variants like

Partition, Pincer-Search, Incremental, Border algorithm etc.
follow the same functions repeatedly. That is why they take

too much computer time to compute all the frequent

itemsets.

All the traditional association rule mining algorithms were

developed to find positive associations between items.

Positive associations refer to associations between items

existing in transactions. In addition to the positive

associations, negative associations can provide valuable

information. In practice there are many situations where

negation of products plays a major role. By using Genetic

Algorithm (GA) the system can predict the rules which

contain negative attributes in the generated rules along with

more than one attribute in consequent part. In this regard the

contribution of the paper [10] is worth mentioning for

finding association rules.

GENETIC ALGORITHM (GA)

Genetic Algorithms (GAs) are adaptive heuristic search

algorithm premised on the evolutionary ideas of natural

selection and genetic. The basic concept of GAs is designed

to simulate processes in natural system necessary for

evolution, specifically those that follow the principles first

laid down by Charles Darwin of survival of the fittest. As

such they represent an intelligent exploitation of a random

search within a defined search space to solve a problem.

GAs are one of the best ways to solve a problem for which

little is known. They are a very general algorithm and so

will work well in any search space. The Genetic Algorithm

[5] was developed by John Holland in 1970. GA is
stochastic search algorithm modeled on the process of

natural selection, which underlines biological evolution [6].

GA has been successfully applied in many search,

optimization, and machine learning problems. GA works in

an iterative manner by generating new populations of strings

from old ones. Every string is the encoded binary, real etc.,

version of a candidate solution. An evaluation function

associates a fitness measure to every string indicating its

fitness for the problem [7].

Standard GA apply genetic operators such selection,

crossover and mutation on an initially random population in
order to compute a whole generation of new strings. GA

runs to generate solutions for successive generations. The

probability of an individual reproducing is proportional to

the goodness of the solution it represents. Hence the quality

of the solutions in successive generations improves. The

process is terminated when an acceptable or optimum

solution is found. GA is appropriate for problems which

require optimization, with respect to some computable

criterion. The functions of genetic operators are as follows:

a. Selection: Selection deals with the probabilistic survival

of the fittest, in that, more fit chromosomes are chosen

to survive. Where fitness is a comparable measure of
how well a chromosome solves the problem at hand.

b. Crossover: This operation is performed by selecting a

random gene along the length of the chromosomes and

swapping all the genes after that point.

c. Mutation: Alters the new solutions so as to add

stochasticity in the search for better solutions. This is

the chance that a bit within a chromosome will be

flipped (0 becomes 1, 1 becomes 0).

PERFORMANCE MEASURES

The aim of association rule discovery is the derivation of if-

then-rules based on the frequent itemsets defined in the

previous section. The Apriori algorithm uses a breadth-first

search (BFS) approach, first finding all frequent 1-itemsets

and then discovering 2-itemsets and continues by finding

increasingly larger frequent itemsets. The data is a sequence
x (1) ,…, x (n) of binary vectors. We can thus represent the

Amitava Nag et al, Journal of Global Research in Computer Science, Volume 2 No 5 2011

© JGRCS 2011, All Rights Reserved 89

data as an n by d binary matrix, where n is the number of

data records and d is number of items [11]. At each level k

the data base is scanned to determine the support of items in

the candidate itemset Ck. The major determining parameter

for the complexity of the Apriori algorithm is:

C = ∑k mk where mk = |Ck|.

We know that m1 = d as one needs to consider all single

items. Furthermore, one would not have any items which

alone are not frequent and so one has m2 = d(d-1)/2. Thus

we get the lower bound for C:

C ≤ m1 + 2m2 = d2.

As one sees in practice that this is a large portion of the total
computations one has a good approximation C ≈ d2.

Including also the dependence on the data size we get for the

time complexity of Apriori:

T = O(d2n).

Thus we have scalability in the data size but quadratic

dependence on the dimension or number of attributes.

But a genetic algorithm consists of a population and an

evolutionary mechanism. The population is a collection of

individuals which represent potential solutions through a

mapping called a coding. The population is ranked with the

help of fitness function. We apply genetic algorithm on the
selected population from the database and compute the

fitness function after each step.

The paper [16] proposes three different measures for

performance evaluation of GAs based on observations in

experiments by simulation: The likelihood of optimality, the

average fitness value and the likelihood of evolution leap.

Based on the above measures, a term has been introduced,

cut-off generation k, i.e., how many generations a GA

should be executed in each run.

Considering C = kr be the total computation cost given to

execute the GA, where r is the number of repeated runs; the

best cut-off generation is the number k of generations which
maximizes the performance with respect to a particular

measure. If C is fixed, we want to find k maximizing the

term (1- p(k)) r , where p(k) denotes the probability that a

GA produces an optimal solution within k generations. If the

value of (1- p(k)) r is fixed, we want to find k minimizing C

= kr. Surely this indicates that the GA based simulations can

be completed in linear time.

Therefore it follows from the above theoretical discussion

that GA based solution provides significant improvement in

computational complexity in comparison with Apriori

algorithm and all its variants.

METHODOLOGY

In this paper the Genetic algorithm (GA) is applied on large

XML data sets to discover the frequent itemsets. We first

load the sample of records from the transaction database that
fits into memory. The genetic learning starts as follows. An

initial population is created consisting of randomly

generated transactions. Each transaction can be represented

by a string of bits.

Our proposed genetic algorithm based method for finding

frequent itemsets repeatedly transforms the population by

executing the following steps:

(1) Fitness Evaluation: The fitness (i.e., an objective

function) is calculated for each individual.

(2) Selection: Individuals are chosen from the current

population as parents to be involved in recombination.

(3) Recombination: New individuals (called offspring) are

produced from the parents by applying genetic operators

such as crossover and mutation.

(4) Replacement: Some of the offspring are replaced with

some individuals (usually with their parents).

One cycle of transforming a population is called a

generation. In each generation, a fraction of the population

is replaced with offspring and its proportion to the entire
population is called the generation gap (between 0 and 1).

 RESULTS

We use different databases from this URL [14] to show the

effectiveness of the proposed method by using MATLAB
software. The initial population was 20 and crossover was

chosen randomly. The mutation probability was taken 0.05.

The frequent itemsets with user-specified minimum support

(σ) ≥ 20% generated for the given database are listed in

Table 2 as follows (though the MATLAB output shows the

frequent itemsets in a binary string format). Obviously the

result matches with the result found from Apriori algorithm

and all its variants.

As described earlier, the implementation of GAs is also

applied on different large data sets taken from the above

mentioned URL (for example, 10000 x 8 Database, Plant
Cell Signaling, Zoo, Tic Tac Toe, Synthetic #1, and Synthetic

#2 etc.) by using MATLAB software. In every case we got

satisfactory results from our experiments. For example,

when we tested our proposed GA based method on the huge

data set of 10000 x 8 Database (consisting of 10000

records) we also achieved success which surely proves the

effectiveness of the proposed method.

CONCLUSION AND FUTURE WORK

We have dealt with a challenging association rule mining

problem of finding frequent itemsets from XML database

using our proposed GA based method. The method,

described here is very simple and efficient one. This is

successfully tested for different XML databases. The results

reported in this paper are correct and appropriate. However,

a more extensive empirical evaluation of the proposed
method will be the objective of our future research. We also

intend to compare the performance of our GA based method

proposed in this paper with the FP-tree algorithm. The

incorporation of other interestingness measures mentioned

in the literature is also part of our planned future work.

REFERENCES

[1] Agrawal R., Imielinksi T. and Swami A. (1993) Database
mining: a performance perspective, IEEE Transactions on

Knowledge and Data Engineering 5 (6), 914–925.
[2] Chen M.S., Han J. and Yu P.S. (1996) Data Mining: An

Overview from a Database Perspective, IEEE Trans.
Knowledge and Data Eng., 866-883.

Amitava Nag et al, Journal of Global Research in Computer Science, Volume 2 No 5 2011

© JGRCS 2011, All Rights Reserved 90

[3] Agrawal R., Imielinski T. and Swami A. (1993) Mining

Association rules between sets of items in large databases, In
the Proc. of the ACM SIGMOD Int‟l Conf. on Management
of Data (ACM SIGMOD „93),Washington, USA, 207-216.

[4] R. Agrawal and R. Srikant, Fast algorithms for mining
association rules, in Proc. 20th Int. Conf. Very Large Data
Bases, VLDB, edited by J.B. Bocca, M. Jarke, and C. Zaniolo,
Morgan Kaufmann 12 (1994) 487–499.

[5] Pei M., Goodman E.D., Punch F. (2000) Feature Extraction

using genetic algorithm, Case Center for Computer-Aided
Engineering and Manufacturing W. Department of Computer
Science.

[6] Stuart J. Russell, Peter Norvig (2008) Artificial Intelligence:
A Modern Approach.

[7] Goldberg, David E. (1989). Genetic Algorithms in Search
Optimization and Machine Learning. Addison Wesley. pp. 41.

[8] Han J., Kamber M. Data Mining: Concepts & Techniques,

Morgan & Kaufmann, 2000.
[9] Pujari A.K., Data Mining Techniques, Universities Press,

2001.
[10] Anandhavalli M.*, Suraj Kumar Sudhanshu, Ayush Kumar

and Ghose M.K. (2009) Optimized association rule mining
using genetic algorithm, Advances in Information Mining,
ISSN: 0975–3265, Volume 1, Issue 2, 2009, pp-01-04.

[11] Markus Hegland. The Apriori Algorithm – a Tutorial. CMA,

Australian National University, WSPC/Lecture Notes Series,
22-27. March 30, 2005.

[12] Soumadip Ghosh, Sushanta Biswas, Debasree Sarkar, Partha
Pratim Sarkar. Mining Frequent Itemsets Using Genetic
Algorithm. International Journal of Artificial Intelligence &
Applications (IJAIA), Vol.1, No.4, October 2010.

[13] World Wide Web Consortium. Extensible Markup Language
(XML) 1.0 (Second Edition) W3C Recommendation.
http://www.w3.org/XML.

[14] http://www2.cs.uregina.ca/~dbd/cs831/notes/itemsets/datasets
.php

[15] David Beasley et al., “An overview of genetic algorithms”,
Part 1 & 2, University Computing, Vol. 15, No. 2 & 4, pp.58-
69 & 170-181, 1993.

[16] Kazuo Sugihara. Measures for Performance Evaluation of
Genetic Algorithms. Dept. of ICS, Univ. of Hwaii at Manoa.

