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Abstract. In recent years XML documents have became very popular for representing semi-structured data and a standard 
for data exchange over the web. Mining XML data from the web is becoming increasingly important as well. In general 

frequent itemsets are generated from large data sets by applying association rule mining algorithms like Apriori, Partition, 

Pincer-Search, Incremental, and Border algorithm etc., which take too much computer time to compute all the frequent 

itemsets. By using Genetic Algorithm (GA) we can improve the scenario. The major advantage of using GA in the 

discovery of frequent itemsets is that they perform global search and its time complexity is less compared to other 

algorithms as the genetic algorithm is based on the greedy approach. The main aim of this paper is to find all the frequent 

itemsets from XML database using genetic algorithm. 

Keywords: Genetic Algorithm (GA), Extensible Markup Language (XML), Association Rule, Frequent itemset, Support, 
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INTRODUCTION 

Large amounts of data have been collected routinely in the 

course of day-to-day management in business, 

administration, banking, the delivery of social and health 

services, environmental protection, security and in politics. 

Such data is primarily used for accounting and for 

management of the customer base. Typically, management 
data sets are very large and constantly growing and contain 

a large number of complex features. While these data sets 

reflect properties of the managed subjects and relations, and 

are thus potentially of some use to their owner, they often 

have relatively low information density. One requires 

robust, simple and computationally efficient tools to extract 

information from such data sets. The development and 

understanding of such tools is the core business of data 

mining. These tools are based on ideas from computer 

science, mathematics and statistics. Mining useful 

information and helpful knowledge from these large 
databases has thus evolved into an important research area 

[1, 2].  

 

Data mining has attracted a great deal of attention in the 

information industry and in society as a whole in recent 

years, due to the wide availability of huge amounts of data 

and the imminent need for turning such data into useful 

information and knowledge. The information and 

knowledge gained can be used for applications ranging from 

market analysis, fraud detection, and customer retention, to 

production control and science exploration. 
 

Frequent pattern mining is an important area of Data mining 

research. The frequent patterns are patterns (such as 

itemsets, subsequences, or substructures) that appear in a 
data set frequently. For example, a set of items, such as milk 

and bread that appear frequently together in a transaction 

data set is a frequent itemset. A subsequence, such as buying 

first a PC, then a digital camera, and then a memory card, if 

it occurs frequently in a shopping history database, is a 

(frequent) sequential pattern. A substructure can refer to 

different structural forms, such as subgraphs, subtrees, or 

sublattices, which may be combined with itemsets or 

subsequences. If a substructure occurs frequently, it is called 

a (frequent) structured pattern. Finding such frequent 

patterns plays an essential role in mining associations, 
correlations, and many other interesting relationships among 

data. Moreover, it helps in data classification, clustering, 

and other data mining tasks as well.  

 

The process of discovering interesting and unexpected rules 

from large data sets is known as association rule mining. 

This refers to a very general model that allows relationships 

to be found between items of a database. An association rule 

is an implication or if-then-rule which is supported by data. 

The association rules problem was first formulated in [3] 

and was called the market-basket problem. The initial 

problem was the following: given a set of items and a large 
collection of sales records, which consist in a transaction 

date and the items bought in the transaction, the task is to 

find relationships between the items contained in the 

different transactions. A typical association rule resulting 

from such a study could be “90 percent of all customers who 

buy bread and butter also buy milk" – which reveals a very 

important information. Therefore this analysis can provide 
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new insights into customer behaviour and can lead to higher 

profits through better customer relations, customer retention 

and better product placements. The subsequent paper [4] is 

also considered as one of the most important contributions 

to the subject. 

 

The web is rich with information. However, the data 

contained in the web is not well organized which makes 

obtaining useful information from the web a difficult task. 

The successful development of Extensible Markup 

Language (XML) [13] as a standard to represent semi-

structured data makes the data contained in the web more 

readable and the task of mining useful information from the 

web becomes feasible.  

 
The widespread use of XML for representing data and 

documents has urged the need to develop tools to efficiently 

store, access and organize XML documents. With the 

development of such semi-structured textual content, the 

document nature is changing. XML documents usually have 

a much richer representation than flat ones. They have a 

logical structure. They are often composed of heterogeneous 

information sources (e.g. text, metadata etc.). Another major 

change with semi-structured documents is the possibility to 

access document elements or fragments. The development 

of classifiers for semi-structured content is a new challenge 

for the Machine Learning (ML) and Information Retrieval 
(IR) communities. A classifier for semi-structured 

documents should be able to make use of the different 

content information sources present in an XML document 

and to classify both full documents and document parts.  

RELATED WORK  

Mining of association rules is a field of data mining that has 

received a lot of attention in recent years. The main 

association rule mining algorithm, Apriori, not only 

influenced the association rule mining community, but it 

affected other data mining fields as well. Apriori and all its 

variants like Partition, Pincer-Search, Incremental, Border 

algorithm etc. take too much computer time to compute all 

the frequent itemsets. The papers [10, 11, 12] contributed a 

lot in the field of Association Rule Mining (ARM).  

 
Several encouraging attempts at developing methods for 

mining XML data have been proposed. However, efficiency 

and simplicity is still a barrier for further development. 
Normally, pre-processing or post-processing is required for 

mining XML data, such as transforming the data from XML 

format to relational format. In this paper, an attempt has 

been made to compute frequent itemsets from XML 

database by applying genetic algorithm so that the 

computational complexity can be improved. 

ASSOCIATION RULE MINING (ARM) 

Association Rule Mining aims to extract interesting 

correlations, frequent patterns, associations or casual 

structures among sets of items in the transaction databases 

or other data repositories [8]. The major aim of ARM is to 

find the set of all subsets of items or attributes that 

frequently occur in many database records or transactions, 

and additionally, to extract rules on how a subset of items 

influences the presence of another subset. ARM algorithms 

discover high-level prediction rules in the form: IF the 

conditions of the values of the predicting attributes are true, 

THEN predict values for some goal attributes.  

In general, the association rule is an expression of the form 

X=>Y, where X is antecedent and Y is consequent. 

Association rule shows how many times Y has occurred if X 

has already occurred depending on the support and 
confidence value. 

Support: It is the probability of item or item sets in the given 

transactional data base:  

 

Support(X) = n(X) / n 

Where n is the total number of transactions in the database 

and n(X) is the number of transactions that contains the item 

set X. Therefore,  

Support (X=>Y) = support(XUY). 

Confidence: It is conditional probability, for an association 

rule X=>Y and defined as confidence(X=>Y) = 
support(XUY) / support(X). 

 

Frequent itemset: Let A be a set of items, T be the 

transaction database and σ be the user-specified minimum 

support. An itemset X in A (i.e., X is a subset of A) is said 

to be a frequent itemset in T with respect to σ, if  

support(X)T  ≥ σ. 

The problem of mining association rules can be decomposed 

into two sub-problems: 

Find all sets of items (itemsets) whose support is greater 

than the user-specified minimum support, σ. Such itemsets 

are called frequent itemsets 
. 

Use the frequent itemsets to generate the desired rules. The 

general idea is that if, say ABCD and AB are frequent 

itemsets, then we can determine if the rule AB=>CD holds 

by checking the following inequality 

support({A,B,C,D}) / support({A,B}) ≥ τ 

where the rule holds with confidence τ.  

It is easy to find that the set of frequent sets for a given T, 

with respect to a given σ, exhibits some important 

properties– 

 Downward Closure Property: Any subset of a 
frequent set is a frequent set. 

 Upward Closure Property: Any superset of an 

infrequent set is an infrequent set. 

The above properties lead us to two important definitions– 

 Maximal frequent set: A frequent set is a maximal 

frequent set if it is a frequent set and no superset of 

this is a frequent set. 

 Border set: An itemset is a border set if it is not a 

frequent set, but all its proper subsets are frequent 

sets. 

Therefore it is evident from the above two dentitions that if 
we know the set of all maximal frequent sets, we can 

generate all the frequent sets. Alternatively, if we know the 
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set of border sets and the set of those maximal frequent sets, 

which are not subsets of any border set, then also we can 

generate all the frequent sets. 

The main association rule mining algorithm, Apriori, also 

called the level-wise algorithm, makes use of the downward 

closure property. As the name suggests, the algorithm is a 

bottom-up search, moving upward level-wise in the lattice. 

This algorithm uses two functions (candidate generation and 

pruning) at every iteration. It moves upward in the lattice 

starting from level 1 till level k, where no candidate set 

remains after pruning [9].  

The algorithm is proposed by R. Agrawal and R. Srikant in 
1994 for mining frequent itemsets for Boolean association 

rules [4]. The name of the algorithm is based on the fact that 

the algorithm uses prior knowledge of frequent itemset 

properties. The Apriori algorithm pseudo-code for 

discovering frequent itemsets for mining is given below:   

Pass 1  
1. Generate the candidate itemsets in C1 

2. Save the frequent itemsets in L1 

Pass k  
1. Generate the candidate itemsets in Ck from the 

frequent  
itemsets in Lk-1  

a) Join Lk-1 p with Lk-1q, as follows:  

insert into Ck  

select p.item1, p.item2, . . . , p.itemk-1, 

q.itemk-1  

from Lk-1 p, Lk-1q  

where p.item1 = q.item1, . . . p.itemk-2 = 

q.itemk-2, p.itemk-1 < q.itemk-1 

b) Generate all (k-1)-subsets from the 

candidate itemsets in Ck 

c) Prune all candidate itemsets from Ck 

where some (k-1)-subset of the candidate 
itemset is not in the frequent itemset Lk-1 

2. Scan the transaction database to determine the 

support for each candidate itemset in Ck 

3. Save the frequent itemsets in Lk 

 

Here a frequent itemset is an itemset whose support is 

greater than some user-specified minimum support (denoted 

Lk, where k is the size of the itemset) and a candidate 

itemset is a potentially frequent itemset (denoted Ck, where k 

is the size of the itemset). Apriori and all its variants like 

Partition, Pincer-Search, Incremental, Border algorithm etc. 
follow the same functions repeatedly. That is why they take 

too much computer time to compute all the frequent 

itemsets.  

All the traditional association rule mining algorithms were 

developed to find positive associations between items. 

Positive associations refer to associations between items 

existing in transactions. In addition to the positive 

associations, negative associations can provide valuable 

information. In practice there are many situations where 

negation of products plays a major role. By using Genetic 

Algorithm (GA) the system can predict the rules which 

contain negative attributes in the generated rules along with 

more than one attribute in consequent part. In this regard the 

contribution of the paper [10]  is worth mentioning for 

finding association rules.  

GENETIC ALGORITHM (GA)  

Genetic Algorithms (GAs) are adaptive heuristic search 

algorithm premised on the evolutionary ideas of natural 

selection and genetic. The basic concept of GAs is designed 

to simulate processes in natural system necessary for 

evolution, specifically those that follow the principles first 

laid down by Charles Darwin of survival of the fittest. As 

such they represent an intelligent exploitation of a random 

search within a defined search space to solve a problem. 

GAs are one of the best ways to solve a problem for which 

little is known. They are a very general algorithm and so 

will work well in any search space. The Genetic Algorithm 

[5] was developed by John Holland in 1970. GA is 
stochastic search algorithm modeled on the process of 

natural selection, which underlines biological evolution [6].  

GA has been successfully applied in many search, 

optimization, and machine learning problems. GA works in 

an iterative manner by generating new populations of strings 

from old ones. Every string is the encoded binary, real etc., 

version of a candidate solution. An evaluation function 

associates a fitness measure to every string indicating its 

fitness for the problem [7].  

Standard GA apply genetic operators such selection, 

crossover and mutation on an initially random population in 
order to compute a whole generation of new strings. GA 

runs to generate solutions for successive generations. The 

probability of an individual reproducing is proportional to 

the goodness of the solution it represents. Hence the quality 

of the solutions in successive generations improves. The 

process is terminated when an acceptable or optimum 

solution is found. GA is appropriate for problems which 

require optimization, with respect to some computable 

criterion. The functions of genetic operators are as follows: 

a. Selection: Selection deals with the probabilistic survival 

of the fittest, in that, more fit chromosomes are chosen 

to survive. Where fitness is a comparable measure of 
how well a chromosome solves the problem at hand. 

b. Crossover: This operation is performed by selecting a 

random gene along the length of the chromosomes and 

swapping all the genes after that point.  

c. Mutation: Alters the new solutions so as to add 

stochasticity in the search for better solutions. This is 

the chance that a bit within a chromosome will be 

flipped (0 becomes 1, 1 becomes 0). 

PERFORMANCE MEASURES 

The aim of association rule discovery is the derivation of if-

then-rules based on the frequent itemsets defined in the 

previous section. The Apriori algorithm uses a breadth-first 

search (BFS) approach, first finding all frequent 1-itemsets 

and then discovering 2-itemsets and continues by finding 

increasingly larger frequent itemsets. The data is a sequence 
x (1) ,…, x (n) of binary vectors. We can thus represent the 
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data as an n by d binary matrix, where n is the number of 

data records and d is number of items [11]. At each level k 

the data base is scanned to determine the support of items in 

the candidate itemset Ck. The major determining parameter 

for the complexity of the Apriori algorithm is:  

C = ∑k mk where mk = |Ck|. 

We know that m1 = d as one needs to consider all single 

items. Furthermore, one would not have any items which 

alone are not frequent and so one has m2 = d(d-1)/2. Thus 

we get the lower bound for C: 

C ≤ m1 + 2m2 = d2. 

As one sees in practice that this is a large portion of the total 
computations one has a good approximation C ≈ d2. 

Including also the dependence on the data size we get for the 

time complexity of Apriori: 

T = O(d2n). 

Thus we have scalability in the data size but quadratic 

dependence on the dimension or number of attributes. 

But a genetic algorithm consists of a population and an 

evolutionary mechanism. The population is a collection of 

individuals which represent potential solutions through a 

mapping called a coding. The population is ranked with the 

help of fitness function. We apply genetic algorithm on the 
selected population from the database and compute the 

fitness function after each step. 

The paper [16] proposes three different measures for 

performance evaluation of GAs based on observations in 

experiments by simulation: The likelihood of optimality, the 

average fitness value and the likelihood of evolution leap. 

Based on the above measures, a term has been introduced, 

cut-off generation k, i.e., how many generations a GA 

should be executed in each run.  

Considering C = kr be the total computation cost given to 

execute the GA, where r is the number of repeated runs; the 

best cut-off generation is the number k of generations which 
maximizes the performance with respect to a particular 

measure. If C is fixed, we want to find k maximizing the 

term (1- p(k)) r , where p(k) denotes the probability that a 

GA produces an optimal solution within k generations. If the 

value of (1- p(k)) r is fixed, we want to find k minimizing C 

= kr. Surely this indicates that the GA based simulations can 

be completed in linear time. 

Therefore it follows from the above theoretical discussion 

that GA based solution provides significant improvement in 

computational complexity in comparison with Apriori 

algorithm and all its variants.  

METHODOLOGY 

In this paper the Genetic algorithm (GA) is applied on large 

XML data sets to discover the frequent itemsets. We first 

load the sample of records from the transaction database that 
fits into memory. The genetic learning starts as follows. An 

initial population is created consisting of randomly 

generated transactions. Each transaction can be represented 

by a string of bits.  

Our proposed genetic algorithm based method for finding 

frequent itemsets repeatedly transforms the population by 

executing the following steps:    

(1) Fitness Evaluation: The fitness (i.e., an objective 

function) is calculated for each individual. 

(2) Selection: Individuals are chosen from the current 

population as parents to be involved in recombination. 

(3) Recombination: New individuals (called offspring) are 

produced from the parents by applying genetic operators 

such as crossover and mutation. 

(4) Replacement: Some of the offspring are replaced with 

some individuals (usually with their parents). 

One cycle of transforming a population is called a 

generation. In each generation, a fraction of the population 

is replaced with offspring and its proportion to the entire 
population is called the generation gap (between 0 and 1).   

 RESULTS 

We use different databases from this URL [14] to show the 

effectiveness of the proposed method by using MATLAB 
software. The initial population was 20 and crossover was 

chosen randomly. The mutation probability was taken 0.05. 

The frequent itemsets with user-specified minimum support 

(σ) ≥ 20% generated for the given database are listed in 

Table 2 as follows (though the MATLAB output shows the 

frequent itemsets in a binary string format). Obviously the 

result matches with the result found from Apriori algorithm 

and all its variants.  

As described earlier, the implementation of GAs is also 

applied on different large data sets taken from the above 

mentioned URL (for example, 10000 x 8 Database, Plant 
Cell Signaling, Zoo, Tic Tac Toe, Synthetic #1, and Synthetic 

#2 etc.) by using MATLAB software. In every case we got 

satisfactory results from our experiments. For example, 

when we tested our proposed GA based method on the huge 

data set of 10000 x 8 Database (consisting of 10000 

records) we also achieved success which surely proves the 

effectiveness of the proposed method.  

CONCLUSION AND FUTURE WORK 

We have dealt with a challenging association rule mining 

problem of finding frequent itemsets from XML database 

using our proposed GA based method. The method, 

described here is very simple and efficient one. This is 

successfully tested for different XML databases. The results 

reported in this paper are correct and appropriate. However, 

a more extensive empirical evaluation of the proposed 
method will be the objective of our future research. We also 

intend to compare the performance of our GA based method 

proposed in this paper with the FP-tree algorithm. The 

incorporation of other interestingness measures mentioned 

in the literature is also part of our planned future work. 
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