
Volume 3, No. 5, May 2012

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 1

ZOUST FOR SUPREMECY-BOOTH’S & BKS MULTIPLICATION ALGORITHM

Barun Biswas*
1
, Krishnendu Basuli

2
 and Samar Sen Sarma

3

*Dept. of Computer Science, West Bengal State University, India

barunbiswas9u6@gmail.com
2Dept. of Computer Science, West Bengal State University, India

krishnendu.basuli@gmail.com
3Department of Computer Science and Engineering,

University of Calcutta, 92, A.P.C. Road,

Kolkata – 700 009, India.

sssarma2001@yahoo.com

Abstract – The aroma of multiplication algorithm is ever lasting. It is due to time, space and cost effective as well as number representation. We
study here that given a multiplier whether we will take one bit, two bit, three bit or in general n bit for multiplicative realization. Since initial
inspiration is Booth’s algorithm[1] we consider an interesting aberration of Booth’s multiplication algorithm in this paper called BKS(named

after the author Barun Biswas, Krishnendu Basuli & Samar Sen Sarma). The BKS algorithm surpasses Booth’s algorithm with minimum cost.

Keywords- Binary multiplication, Arithmetic algorithmic complexity, trade of among relevant parameters, complements number representation.

INTRODUCTION

Multiplication is one of the most important arithmetic

operations. In our childhood we learn to multiply two

number by times table process and using our figures. After

that when we grew up and enter the world of computer

science we learnt about different process of multiplication.

Many new algorithms of multiplication is introduced to.

Now a day many new process of multiplication has been

proposed. Using these process of multiplication many high

speed of processors has been designed. Even we saw that

many other arithmetic processes are performed by using

repeated multiplication. Here is the point that if we can
introduce a new process of high speed multiplication then

accordingly using that process all the field where

multiplication can be used we can gain speed, save time and

also cost can be reduced. During the design of the proposed

multiplication process we try to maintain flexibility of the

algorithm, the unnecessary operation that can be reduced is

reduced.

As we compared the proposed the process with Booth’s here

we mention that in Booth’s process of multiplication [1] of

the maximum number of partial product is N, whereas in our

proposed process the maximum number of partial product is
N/2. So it can easily be understand how much efficient this

process is compared to Booth’s multiplication. In most of

the example of multiplying two 2’s complement binary

number we notice that in Booth’s process there is a carry

generation and carry propagation time which increase the

time of execution time for a large number of multiplication.

HISTORY OF ALGORITHM: [3]

Word Origin[8]:

It's hard to see how, but the word "algorithm" came from the
name of Abu Abdullah Muhammad ibn Musa Al-

Khwariszmi, a ninth century, Persian mathematician.

"Algorism" originally referred to arithmetical notation using

Hindu-Arabic numerals. By the 18th century, "algorism"

evolved into "algorithm" via the Latin translation of Al-

Khwarizmi's name, reports Scriptol.com.

Mathematical Functions:

Al-Khwarizmi designed basic, precise rules for adding,

multiplying and dividing numbers. These efficient,

mechanical rule sets could extract square roots and calculate

digits of pi, S. Dasgupta, C.H. Papadimitriou, and U.V.

Vazirani point out in their book, "Algorithms."[7]

Benefits to Civilization:

Since Al-Khwarizmi's time, algorithms have played a

progressive role in Western civilization, to forward science

and technology, as well as benefit industry and commerce.

As computers and data processing developed, algorithms

began to embody the positional system in its bits, words and
arithmetic unit, say Dasgupta, Papadimitriou and

Vazirani.[7]

Today:

The design of algorithms stands as a centerpiece for

computer science and information systems programmers.

Energy exploration, financial management, entertainment,
musical composition, and medicine all benefit from

algorithmic procedures, according to the Music Algorithms

website

WHAT DOES MULTIPLICATION MEAN?

If we minutely analyze different types of multiplication

process then we notice that multiplication is nothing but

repeated addition to the previous partial product performed

on the multiplicand depending on the multiplier. Suppose

we want to multiply two numbers M(multiplicand) and

Q(multiplier), then we have to add M Q number of times.

Here it gives the worst case complexity as the maximum

number of operation is performed to per formed the

multiplication operation. As a result different algorithm

Barun Biswas et al, Journal of Global Research in Computer Science, 3 (5), May 2012, 1-6

© JGRCS 2010, All Rights Reserved 2

designers tried to reduce the number the partial product to

reduce the complexity of the process.

PREVIOUS WORKED ON MULTIPLICATION

Before discussing the proposed process of multiplication let

us take a look to those previous works that are available at

present. To make our presentation clear it is necessary to

discuss them.

Repeated addition multiplication: [4]:

Among the available multiplication algorithms the most

simple one is repeated addition multiplication. It has the

complexity of O(n) all the time. The logic behind this

process is very simple, simply decrease the multiplier by 1

and add the multiplicand to the accumulator and repeat the

process until the multiplier become 0(zero). It is clear that

the process will run number of times equals to the

multiplier.

Shift and add [4]:

The next process of multiplication is “shift and add”. This

process is performed on the binary number. Here the LSB of

multiplier is checked, if it is 1 then multiplicand is added

otherwise the previous partial product is shift one bit to the
right. This process is continued until the MSB of the

multiplier is checked.

Array multiplier [5]:

.
The operation is as follows

-

As our process is based on the concept of the Booth’s

multiplication we shall discuss the Booth’s process next .

Divide and conquer [2]:

In traditional process of multiplication we see that the

process of multiplication of two n bit binary number require

O() digit operation . but in divide-n-conquer technique the

multiplication requires O() or O() (approximately)
bit operation.

In this process binary number is divided into two parts: say

the number is X, so the number can be represented as X= a

+ b. So in this process we see that there may be four n/2 bit

operation but the product (say X*Y) can be represented as

three n/2 bit multiplication. So in this process the

complexity can be represented as O() = O().

Booth’s Multiplication[1]:

Booth's multiplication algorithm is a multiplication
algorithm that multiplies two signed binary numbers in two's

complement notation. The algorithm was invented by

Andrew Donald Booth in 1951 while doing research on

crystallography at Birkbeck College in Bloomsbury,

London. Booth used desk calculators that were faster at

shifting than adding and created the algorithm to increase

their speed. Booth's algorithm is of interest in the study of

computer architecture

Booth's algorithm involves repeatedly adding one of two

predetermined values Multiplicand and Multiplier to a
product, then performing a rightward arithmetic shift on

product. Let M and Q be the multiplicand and multiplier,

respectively; and let x and y represent the number of bits in

m and r. Then the number of bit in the product is equal to

the (x+y+1).

The Booth’s multiplication process is based on the four

basic steps. In this process the two multiplier bit is checked

and depending on their combination (2^2=4) four different

steps is performed. Now let us discuss the Booth’s

multiplication by taking an example.

Let M(multiplicand) =0000000000001101

 Q(multiplier) =0000000001010101

 M =0000000000001101

 Q =0000000001010101

=1111111111110011 // multiplier bit is 10
=000000000001101* // multiplier bit is

=11111111110011** // multiplier bit is 10
=0000000001101*** // multiplier bit is 01
=111111110011**** // multiplier bit is 10
=00000001101***** // multiplier bit is 01
=1111110011****** // multiplier bit is 10
=000001101******* // multiplier bit is 01

 =0000010001010001
In the above example we notice that there are three

operations performed, namely shift, addition, complement.

The number of operation is as follows

Shift = 7

Addition= 7

Complement= 4

In this case the complexity of the Booth’s process is

maximum.

http://en.wikipedia.org/wiki/London
http://en.wikipedia.org/wiki/Arithmetic_shift

Barun Biswas et al, Journal of Global Research in Computer Science, 3 (5), May 2012,

© JGRCS 2010, All Rights Reserved 3

PROPOSED PROCESS OF MULTIPLICATION: BKS

In the following passage we shall discuss about our
proposed process of multiplication. The logic that we follow

will be discussed in brief.

Before discussing the logic behind the proposed process of

the multiplication algorithm we shall discuss on some points

based on which we proceed. We know that when there is a n

number of 1’s sequentially present in a number then that

part can be represented (of course in binary number system)

- .

For example let us take a binary number 111111=63, i.e. in

this binary number there is six 1’s. So according to the rule

this number can be represented as

=1000000-1=111111 (64-1=63).

Therefore if we want to multiply some number by a number

of sequences of 1’s then the process can be as follows:

Say multiplicand=M and the multiplier is a number of n

number of 1’s then the product will be

 M*(n number of 1’s)

 =M*(

 =

 = [=1]

 = M` [M` is 2’s complements
representation of –M]

Now can be obtained if we perform left shift on the
number M n times. Therefore the conclusion is that add the

complement of multiplicand M to .
In our discussion of multiplication of two 2’s complement

presentation of number we shall use this process whenever

we find a sequence of 1’s in the multiplier.

BKS Algorithm:

The BKS process of multiplication is performed by

considering two bits of multiplier. We check two bits and

shift two places to the right except when it is last check.

Based on the value of these two bits we shall perform four

operations. They are as follows:

a. If the multiplier bits are 00 then do nothing and check

the next bit
a) If it is 0 then shift one place to right.

b) If it is 1 then add multiplicand and shift one place to

right.

b. If the multiplier bits are 01 then add multiplicand.

c. If the multiplier bits are 10 then add 2*multiplicand.

d. If the multiplier bits are 11 then subtract the

multiplicand and check the next bit

a) If it is 1 then do nothing and shift one place to the

right.

b) If it is 0 then add the multiplicand

Flow chart

The flow chart for the BKS algorithm is as follows:

Figure 1: Flow chart for the BKS algorithm

So far we have seen the algorithmic form and flow chart of

the proposed algorithm for multiplication. Now let us take

an example and analysis the procedure. To compare with the

Booth’s algorithm let us take the same example discussed

before on Booth’s process.

Let M represent the multiplicand and Q represent the

multiplier. And the M and Q are 0000000000001101 and

0000000001010101respectively. Based on the proposed

process let us compute the product.

M(multiplicand) =0000000000001101

 Q(multiplier) =0000000001010101

 M =0000000000001101

 Q =0000000001010101

=0000000000001101 // multiplier bits are 01

=00000000001101** // multiplier bits are 01

=000000001101**** // multiplier bits are 01

=0000001101****** // MSB are 01

=0000010001010001

Barun Biswas et al, Journal of Global Research in Computer Science, 3 (5), May 2012, 1-6

© JGRCS 2010, All Rights Reserved 4

In the above process of multiplication we notice that the first

two multiplier bits are 01 so according to our rule just add

M and then shift partial product two place right and check

the next two bit of the multiplier again it is 01 so do the

same operation again. Continue this process until MSB is

reached. And at the end of the process we notice that the
number of shift, complement and addition operation are as

Shift = 6

Complement= 0

Addition= 3

So in this example we can see that we need to do 1 shift, 4

complement and 4 addition operations less. So we see that in

worst case of Booth’s multiplication we are gainer.

Now let us discuss some general case where we can prove

that our process is advantageous than Booth’s algorithm. For

the two bits comparison there may be four possibilities 00,
01, 10, 11. For these possibilities the different operation is

discussed. We also see that for n number of bits there is

always (n+1) shift operation where as in our proposed

process there may be less than n or equal to n or in very few

case there may be greater than n shift operation. And as the

multiplier bit is shifted one place at a time there is a

possibility of occurring complement operation several times.

The most important case is to notice is that in our proposed

algorithm as we check and shift two bits at a time so there is

a possibility of occurring maximum n/2 partial product,

where as in Booth’s process it is n times. In case of Booth’s
process if there are 01111…..1110 or

10000……00001 the operation is same one addition and one

subtraction operation to be performed. But in our case when

the bits are 1000000….000001 then two

addition is to be performed (the complexity of subtraction

operation is more than addition) and if the bits are

011111….11111110 then the case is same as booth or

modified booth; i.e. one addition and one subtraction.

Now one of the most important topic still to be discussed is

that the worst case complexity of our process. For our

proposed BKS process the worst case complexity comes if
the bit pattern of multiplier is ………..11011011011011011.

in this case we can see the for the bit pattern 011 the

operation need is 1 complement, 2 shift and 1 addition. For

the same bit pattern in booth process the operations are 1

complement, 2 shift and 1 addition operation.

Let us discuss this by an example let

M =10101011010

Q =11011011011

For the above multiplicand and multiplier the operation

required in our proposed process is 4 complement

operations, 11 shift operations, and 7 addition operations,
which is same as Booth’s process. So we can say that even

in our worst case the complexity of our proposed process of

multiplication does not exceed that of Booth’s process.

RESULT

We notice that to perform the multiplication process of both

Booth’s process and our proposed BKS process only three

basics operations are needed namely shift, complement and

addition. We perform our proposed process of multiplication

and Booth’s process of multiplication on 500 randomly

generated data, and we got the result that our process is

advantageous over Booth’s process is

Shift 4.88%

Complement 31.64%

Addition 18.52%

These results are purely an average case advantageous of

our proposed BKS process over Booth’s process.

The graph representation of the result (shift, complement

and addition operation) performed on 50 data is shown

below. Here the randomly generated number (in binary

form) is given and also the number of operation required.

Table: 1

Barun Biswas et al, Journal of Global Research in Computer Science, 3 (5), May 2012,

© JGRCS 2010, All Rights Reserved 5

Figure: 2

Figure: 3

Figure: 4

Figure: 5

The configuration of the computer we used to execute the

program is Intel® Pentium® Dual CPU E2160 @1.80GHz
RAM 1 GB, Operating system Windows 7, and the software

used is Turbo C++ 4.5. The result on the 500 data for

Booth’s process is that total number of shift, complement

and addition is 7000, 2241, 3976 respectively and that for

BKS process are 6756, 659, 3050. If we consider chips to

perform these operations then we can see that the time

required for shift operation (4 bit bidirectional Universal

shift register LS 194) is 1/36 ns [9] [10], add operation (4 bit

carry look ahead adder LS 7483) is 45 ns [9] [10] and for

complement operation (LS hex inverter 7404) is 12 ns [9]

[10]. Time required for shift, complement operation and add

operation in Booth’s process is 194 ns, 26892 ns and 178920
ns. Therefor total 206006 ns time is required. And that for

our BKS process is 187 ns for shift operation, 7908 ns for

complement operation and 137250 ns for add operation.

There for total time required is 145345 ns. So here we can

understand the gain in time delay.

Here we again mention that in our worst case the complexity

of our proposed process of multiplication does not exceed

that of Booth’s process. It is always less or equal to Booth’s

process.

COMPLEXITY ANALYSIS

To compute the complexity of our proposed BKS algorithm

we have notice the number of partial products. In our

proposed algorithm as we check and shift two bits at a time

so there is a possibility of occurring maximum n/2 partial
product. So the complexity of the proposed process is

O(n/2).

FUTURE SCOPE

In the proposed process of multiplication we deal with two
bits of multiplier. Here we see that this process gives

advantages over Booth’s process of multiplication. and we

reduce the complexity from O(n) to O(n/2). The actual logic

was to reduce the number of partial products. In future we

will try to deal with three bits of multiplier so that we can

reduce the complexity of the multiplication.

Barun Biswas et al, Journal of Global Research in Computer Science, 3 (5), May 2012, 1-6

© JGRCS 2010, All Rights Reserved 6

CONCLUSION

The multiplication algorithm presented here is a deviation
from Booth’s algorithm only doubling of shift parameter.

The result shows that it challenges Booth’s algorithm in

time space and cost parameter. Since modified of Booth’s

algorithm shows another way of treating our multi objective

gain, we attacked the problem in a novel way that may

resemble historically Stassen’s matrix multiplication. The

analogy may not be right at the first look. However we

observed that “History repeats itself”.

REFERENCES

[1]. A. Booth, “A signed binary multiplication technique,” Q. J.

Me& Appl. March., vol. 4, pp. 236-240, 19.51.

[2]. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullmant “The

design and analysis of computer algorithm” Pearson, 1974.

[3]. Donald K. Knuth “The art of computer programming”,

Vol. 1, Addition-Wesley, 2004.

[4]. John P. Hayes “Computer architecture and organization”,

Second Edition, McGraw-Hill, 1988.

[5]. M. Morris Mano “Computer System Architecture”, Third

Addition, Prentice Hall, 1993.

[6]. Morvin Lee. Minsky “Computation: Finite & Infinite

machine: Prentice Hall, 1967.

[7]. S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani

“Algorithms” Paperback - Sep 13, 2006.

[8]. http://www.scriptol.com/programming/algorithm-

history.php#Origin-Word-Algorithm visited on 18 May

2012

[9]. William D.Anderson, Roberts Loyd Morris, John Miller

“Designing with TTL integrated circuit”, McGraw-Hill,

1971

[10]. “TTL data book for design Engineer”, 2nd edition, Texas

instrument Inc, 1981

