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ABSTRACT: In medical diagnosis nowadays 3D medical model of human organ is created based on 2D image such as 
CT and MRI because 3D model includes and reflects more information than 2D image. 3D medical model has many 
utilities, including surgery plan design and simulation, defect area inspection, personalized implant design and physical 
model fabrication. Also the drawback of overlapping, found in 2D images is overcame by 3D modeling (usually in 
images of ribcage). First, an appropriate segmentation method is applied and the segmentation result is used as the 
input of Marching Cubes to generate accurate isosurfaces and 3D modeling. For better view from different angle 
volume rotation method is then applied at last. 
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I.INTRODUCTION 

The desire to perform accurate and low risk surgery has led to the discovery of computer based surgical planning. In 
CT or MRI scanning, three-dimensional (3D) data are acquired as a series of separate slices called DICOM Files. In 
normal practice the radiologists or surgeons visually inspect each slice and identify the common landmarks, such as the 
major blood vessels or skeleton and the locations of the abnormalities will be determined based on these landmarks. 
Then, they mentally visualize the anatomy of the patient with the associated abnormalities. However, the process of 
identifying the structures based on the 2D slices is a very tedious, time consuming, and prone to error process. Also in 
some images the overlapping is found in 2D images (usually in images of ribcage), in such cases they face many 
difficulties. Furthermore, the person also may sometime misclassify the small tumors in 2D slice as the blood vessel. 
Thus, it will affect the decision on the treatment planning or diagnostic imaging. And, mental reconstruction of the 
patient anatomy is also a burden to the doctors because the task needs a lot of experience and knowledge [3]. Therefore, 
there is need of better accurate technique. 
The flow of the algorithm is shown as follows: 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
         Fig. 1 Flow of algorithm 
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II.DICOM FILES 
 

The DICOM file extension is a DICOM-Digital Imaging and Communication in Medicine Format Bitmap file standard 
created by the National Electrical Manufacturers Association (NEMA) to aid the distribution and viewing of medical 
images, such as CT scans, MRIs, and ultrasound. 
 

III.SEGMENTATION 
 

To reconstruct accurately the original image into a 3D image, segmentation is necessary. The segmented result will 
directly influence the accuracy of three-dimensional reconstruction. Active contours, or snakes, as defined by Kass et 
al. [6] are curves defined within an image domain that can move under the influence of internal forces coming from 
within the curve itself and external forces computed from the image data. Active contours can also be considered as 
energy-minimizing splines guided by external constraint forces that pull them toward features such as lines and edges. 
[5] 
Let I be a given image defined on the domain, and let C be a closed contour represented as the zero level set of a signed 
distance function Φ, i.e. ܥ = (ݔ)ߔ/ݔ  = 0[4]. We specify the interior of C by the following approximation of the 
smoothed Heaviside function: 

(ݔ)∅ܪ = ൞

(ݔ)∅ ݂݅                                                   ,1 < −߳
(ݔ)∅ ݂݅                                                  ,0 > −߳ 
1/2 ቀ1 + (ߝ/∅) + ଵ

గ ୱ୧୬(గ∅(௫)/ఢ)ቁ , ݁ݏ݅ݓݎℎ݁ݐ݋
                                                    (1) 

 
Similarly, the exterior of C is defined as൫1  Φ(x)൯. To specify the area just around the curve, we will use theܪ−
derivative of a smoothed version of the Dirac delta function [3]. 
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⎪
⎨

⎪
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We now introduce a second spatial variable. We will use x and y as independent spatial variables each representing a 
single point in Ω. Using this notation, we introduce a characteristic function in terms of a radius parameter r. 
 

,ݔ)ߚ (ݕ = ൜1,                            ݂݅ |ݔ − |ݕ < ݎ
 (3)    ݁ݏ݅ݓݎℎ݁ݐ݋                                  ,0

 
We use ݔ)ߚ,  ,to mask local regions. This function will be 1 when the point y is within a ball of radius r centered at x (ݕ
and 0 otherwise. Using (ݕ,ݔ)ߚ we now define an energy functional in terms of a generic force function, F. Our energy 
is given as follow: 

(∅)ܧ = ∫ (ݔ)∅ߜ ∫ ,ݔ)ߚ ൯ஶ(ݕ)∅,(ݕ)ܫ൫ܨ.(ݕ
ஐ೤

ஶ
ஐೣ

ݕ݀  (4)ݔ݀
The function F is a generic internal energy measure used to represent local adherence to a given model at each point 
along the contour. In computing E, we only consider contributions from the points near the contour. By ignoring 
inhomogeneity that may arise far away, we give ourselves the ability to capture a much broader range of objects. We 
accomplish this with multiplication by the Dirac function, (ݔ)∅ߜ in the outer integral over x. Thus, the total 
contribution of the energy is the sum of F values for (ݕ,ݔ)ߚ neighborhood along the zero level set [3]. 

IV. MARCHING CUBE 
 

The fundamental of MC algorithm is to divide the volume data into voxels, check the voxels one by one and pick out 
the voxels that intersect with isosurface. Then calculate the intersection points by use of linear interpolation. Finally, 
connect the intersection points by a certain form according to the relative position of voxels and isosurface to form the 
surface, which is regarded as the approximation of the isosurface in the voxels.Relative position of voxels and 
isosurface [7]. 
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There are two features in the MC algorithm: 
(1) Each of the triangles contacts with some voxel. 
(2) Each of the triangle-meshes extends in one sequence. In other words, there exists relativity between current 

one and that of the neighbour voxels in other directions (front, back, left, above, down) [2]. 
As each voxel has 8 vertices and each of them has two states of inside or outside the isosurface, we have at least 28 = 
256 mesh models of the isosurface. The number of the mesh models can be reduced to 15 in view of the symmetry [2], 
as shown in Figure 3. 

 
Fig. 2 Voxel Formation [7] Fig. 3 Possible 15 different cases of voxel formation [8] 

 
The normal of the voxel can be replaced by the gradient of the central point of the voxel, which is obtained through 
central difference method shown as formula (5), (6), (7) and (8). The original 3D data sets are used for computing 
normal, which can ensure the smooth of the reconstructed image. [2] 

௫݀ܽݎܩ = ݂൫ݔ௜ + 1, ௝ݕ ௞൯ݖ, −
௙൫௫೔ିଵ,௬ೕ,௭ೖ൯

ଶ∆௫
                    (5) 

 
௬݀ܽݎܩ = ݂൫ݔ௜,ݕ௝ + 1, ௞൯ݖ −

௙൫௫೔ ,௬ೕିଵ,௭ೖ൯
ଶ∆௬

(6) 

 
௭݀ܽݎܩ = ݂൫ݔ௜,ݕ௝ ௞ݖ, + 1൯ − ௙൫௫೔ିଵ,௬ೕ ,௭ೖିଵ൯

ଶ∆௭
                                                                        (7) 

 
௨ܰ = ீೠ

ට(ீೣ)మା൫ீ೤൯
మ
ା(ீ೥)మ
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V. VOLUME ROTATION METHODS 
 

Visualization by only implementing surface reconstruction methods is not flexible to render and display any desired 
viewing angles. It is necessary to depict any viewing angles of the 3D object in order to provide better understanding 
on the nature of the object as well as identify the location of abnormalities in the structures of the object more 
accurately and efficiently [9].There are two approaches to visualize the data in different viewing angles, either change 
the direction of rays or rotate the volume of dataset. 
 
A. Euclidean Transformation 
 
Euclidean transformation is the most commonly used transformation method. This transformation consists of 
translation, rotation or reflection. In this project, only volume rotation was implemented.  The transformation involves a 
fairly simple trigonometric calculation to obtain a transformation matrix for a rotation about the coordinate axes. It 
preserves length angle measure and the shape of a geometric object will not change. In other words, the geometry of the 
transformed object remains unchanged. Most viewing transforms are rigid body transformation. The transformation 
cannot rotate the volume in real time because it involves complex computations of trigonometry functions. Equations 
(9), (10) and (11) show rotation about the z-axis by an angle θ. 
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ᇱݔ = ݔ cos ߠ − ݕ sin  (9)     ߠ
ᇱݕ = ݔ sin ߠ + ݕ  cos  (10)                  ߠ
ᇱݖ =  (11)                                               ݖ

 
In volume rotation, there are three degrees of freedom corresponding to the ability to rotate independently about the 
three coordinate axes [9]. Equation (12) shows the construction of the volume rotation as a product of individual 
rotation about the three axes. 

ܴ = ܴ௭ × ܴ௬ × ܴ௫                   (12) 
 
Equation (12) can be written in matrix form as: 
 

ܴ = ൦

cos ߛ
sinߛ

− sinߛ
cos ߛ

0
0

0
0

0 0 1 0
0 0 0 1

൪ ൦
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0 1 0    0
−sinߚ

0
0
0

cosߚ
0

0
1

൪ 

 

቎
1 0 0         0
0 cosߙ −sinߙ    0
0
0

sinߙ
0

cosߙ
0

   0
   1

቏ ቎

ݔ
ݕ
ݖ
0
቏                                                                (13) 

 
Where α, β and γ are the rotation angles in x, y and z directions, respectively.  
 
B. Shear Transformation  
 
The effect of a shear transformation looks like pushing a geometric object in a direction that is parallel to a coordinate 
plane in 3D or coordinate axis in 2D. A rotation in the plane can be expressed as a composition of three shears along 
two orthogonal axes. Fig 4 illustrates 2D rotation achieved by three shears [9]. 
 

 
Fig. 4 Two-dimensional rotation achieved by three shears (Image taken from) [9]. 

 
A rotation in the plane by an angle ψ ≠  П can be written as a composition of three shears, each along one of the two 
axes and across the other, namely 

ܴ(ψ) = ܵଷܵଶ ଵܵ                                   (14) 
 

Equation (14) can be written in matrix form as: 
 

ܴ(ψ) = ቈ1 − tan ந
ଶ

0 1
቉ ൤ 1 0

sinψ 1൨ ቈ
1 − tan ந

ଶ
0 1

቉     (15) 

 
For volume rotation, one can apply decomposition of Equation (15) separately to three rotations along x, y and z axis 
respectively, obtaining the shear products as Equation (16), (17) and (18) in matrix form.  As a result, ܳ =  (ܽ,ߚ,ߛ)ܴ
can be written as the product of nine shears as Equation (19). 
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ଵܳ = ଵܵଷ ଵܵଶ ଵܵଵ 
 

= ቎
1 − tan ఊ

ଶ
0

0 1 0
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቏ ൥
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sinߛ 1 0
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ܳଶ = ଶܵଷܵଶଶܵଶଵ 
 

= ቎
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ଶ
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ܳଷ = ଷܵଷܵଷଶܵଷଵ 

 

    = ቎
1 − tan ఈ

ଶ
0

0 1 0
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቏ ൥
1 0 0

sinߙ 1 0
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൩ ቎
1 − tan ఈ

ଶ
0
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ܳ = ܳଷܳଶܳଵ = ܵଷଷܵଷଶ ଷܵଵܵଶଷܵଶଶܵଶଵ ଵܵଷ ଵܵଶ ଵܵଵ   (19) 
 

This is how Shear Transformation can be carried out. 
 

VI.CONCLUSION  
 

In this paper, an accurate surface reconstruction method of medical image is proposed. In this algorithm, suitable 
segmentation methods are used to abstract the region for 3D modeling using Marching Cube. Marching cubes, an 
efficient algorithm for 3D surface construction, complements 2D CT data by giving physicians 3D views of the 
anatomy. The algorithm uses a case table of edge intersections to describe how a surface cuts through each cube in a 
3D data set. Using volume rotation method we can view this 3D model from different angle. 
However, there are still some points for future study. Surface rendering and volume rendering can be integrated. The 
module of image fusion could be added after the module of segmentation, for example, the data of the CT slices can be 
reconstructed after the fusion with PET images, leading the therapy and diagnosis more effective. 
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