Representation of a Full Transformation Semi-group Over a Finite Field
 Munir Ahmed ${ }^{1 *}$, Muhammad Naseer Khan², Muhammad Afzal Rana*
 ${ }^{1}$ Department of Mathematics, Islamabad Model College For Boys, Islamabad, Pakistan
 ${ }^{2}$ Department Of Mathematics and Statistics, Riphah International University, Islamabad, Pakistan

Research Article

Received date: 09/01/2018
Accepted date: 10/05/2018
Published date: 11/06/2018
*For Correspondence

Department Of Mathematics, Islamabad Model College For Boys, F-10/4, Islamabad, Pakistan

E-mail: irmunir@yahoo.com

Keywords: Semigroup of transformations; Representation of semigroup; Finite field

Abstract

In this paper we discuss the representations of a full transformation semigroup over a finite field. Furthermore, we observe some properties of irreducibility representation of a full transformation semigroup and discuss the linear representation of a zero-adjoined full transformation semigroup. Moreover, we characterize the linear representation of a full transformation semigroup over a finite field F_{q} (where q is a prime power) in terms of Maschke's Theorem. Finally, we observe that there exists an isomorphism between the full matrix algebra $\left(F_{\mathrm{q}}\right)_{\mathrm{m}}$ and the space of all linear transformation $L\left(F_{q}{ }^{m}\right)$ on an m-dimensional vector space $F_{q}{ }^{m}$

INTRODUCTION

Serre has given a comprehensive theory of linear representation of finite groups in [1]. It has been obtained in the group theory that the number of simple FG- modules is equal to the number of conjugacy classes of the group G such that the characteristic of the field F does not divide the order of G . A lot of work is done for the classification of groups in terms of its representation and characterization.

By Clifford, each element of a semigroup is uniquely determined by a matrix over a field and a complete classification of the representations of a particular class of a semigroups is given in [2-4]. Moreover, irreducible representations of a semigroup over a field is obtained as the basic extensions to the semigroup of the extendible irreducible representations of a group, and the representations of completely simple semigroup is also constructed in [2-4].

Stoll has given a characterization of a transitive representation, and obtained a transitive representation of a finite simple semigroup, see [5]. The construction of all representations of a type of finite semigroup which is sum of a set of isomorphic groups is also obtained. Munn obtained a complete set of inequivalent representations of a semigroup S which are irreducible in terms of those of its basic groups of its principal factors. He also introduced the principal representations of a semigroup in [6]. A representation of semigroup whose algebra is semisimple is characterized in $[7,8]$. The representation of a finite semigroup for which the corresponding semigroup algebra is semisimple is also obtained. An explicit determination of all the irreducible representations of T_{n} is due to Hewit and Zuckerman in [9].

There is a one-to-one correspondence between the representations of a group G and the nonsingular representations of the semigroup S , which preserves equivalence, reduction and decomposition [10].

In the case of an irreducible representation of a finite semigroup, the factorization can be avoided and an explicit expression of such representation is given in [11]. We consider a full transformation semigroup ${ }_{n}$ to obtain its combinatorial property with regard to its irreducible representations. There exists a non-zero linear transformation satisfying some specific conditions in Theorem 7.3.

It is observed that for the basis of a vector space F_{q}, there is a natural one-to-one correspondence (between the rep-

Research \& Reviews: Journal of Statistics and Mathematical Sciences

 equivalence, reduction and decomposition into irreducible constituents.
 simple if and only if the characteristic of F_{q} does not divide the order mm of the full transformation semigroup ©

The representation of full trasformation semigroup over a finite field is discussed in Section-8, specially the Maschke's theorem is restated for the semisimplicity of the semigroup algebra F_{q} [\circlearrowleft], see Theorem 8.1 Finally, a linear algebraic result regarding the isomorphism between the full matrix algebra $\left(F_{q}\right)_{m}$ and the space of all the linear transformations on $F_{q}{ }^{m}$ is given in Theorem 8.2.

PRELIMINARIES

Definition

A transformation semigroup is a collection of maps of a set into itself which is closed under the operation of composition of functions. If it includes identity mapping, then it is a monoid. It is called a transformation monoid.

If (X, S) is a transformation semigroup then X can be made into semigroup action of S by evaluation, $x . s=x s=y$ for $s \in S$, and $x, y \in X$. This is the monoid action of S on X, if S is a transformation monoid.

Hewitt and Zuckerman gives a treatment of the irreducible representation of the transformation semigroup on a set of finite cardinality [8]. The result for the case of a finite semigroup S with F[S] semisimple was given by Munn in [13].

The full reducibility and the proper extensions of irreducible representations of a group to those of a semigroup are the basic extensions.

THEOREM 2.2

Full reducibility holds for the representations of a semigroup S over the field F if and only if
Full reducibility holds for the extendible representations of G over F, and
The only proper extension of a proper representation of G to S is the basic extension [14].
A representation M of S is homomorphism of S into the multiplicative semigroup of all (α, α) matrices(where α is an arbitrary positive integer) such that $M(x) \neq 0$ for some $x \in S$. If the set $\{M(x)$: $x \in S\}$ is irreducible i.e., if every (α, α) matrix is a linear combination of matrices $M(x)$, then M is said to be an irreducible representation of S. The identity representation is the mapping that carries every $x \in S$ into the identity matrix.

Full transformation semigroup

The idea of studying T_{n} was suggested by Miller (in oral communication). The problem of obtaining representations of semigroup as distinct from groups have been first studied by Suskevic. Clifford has given a construction of all representations of a class of semigroups closely connected with Tn. Popizovski has pointed out some simplep properties of n_{n}. In the present discussion, we relate the irreducible representations of ${ }_{n}$ to that of its semigroup algebra $\mathrm{L}\left({ }_{n}\right)$. The set of all transformations of set X into itself is called the full transformation semigroup under the binary operation of multiplication as the composition of transformation analogue of the symmetric group G_{x} Let $X_{n}=\{1,2,3, \ldots, n\}$ be a finite set and denote the semigroup TXn of all the self-maps of X_{n} into X_{n}. If cardinality of X_{n} is n, denote $T n$ for $T X n$ then the cardinality of $T n$ is n^{n} [15].

Example

The set $S=\{e, a, x, y\}$ is a semigroup under the multiplication. The Cayley's multiplication table of S is given as follows [16].

\cdot	e	a	x	y
e	e	a	x	x
x	a	e	x	y
y	x	y	x	y

If the mapping $\phi: S \rightarrow \mathcal{Q}_{X}=\{1,2\}$ is given by $x \phi=\beta, x \phi=\beta, x \phi=\beta$, and $y \phi=\gamma$, then ϕ embeds S in $\mathcal{T}_{\{1,2\}}$. It can also be seen that the map $\psi: S \rightarrow \mathcal{T}_{\{\mathrm{a}, \mathrm{e}, \mathrm{x}, \mathrm{y}\}}$ is defined by

$$
\psi(e)=\left(\begin{array}{llll}
e & a & x & y \\
e & a & x & y
\end{array}\right)
$$

Research \& Reviews: Journal of Statistics and Mathematical Sciences

$$
\begin{aligned}
& \psi(\mathrm{x})=\left(\begin{array}{llll}
e & a & x & y \\
x & x & x & x
\end{array}\right) \\
& \psi(\mathrm{x})=\left(\begin{array}{llll}
e & a & x & y \\
x & x & x & x
\end{array}\right)
\end{aligned}
$$

and
$\psi(\mathrm{y})=\left(\begin{array}{llll}e & a & x & y \\ y & y & y & y\end{array}\right)$.
embeds S into $\mathcal{T}_{\{\mathrm{a}, \mathrm{e}, \mathrm{x}, \mathrm{y}\}}$.
Notice that y is a right regular representation of S, where $\psi: S \rightarrow \mathcal{T}_{S}$ as defined above (where $\left.\psi(e), \psi(\mathrm{a}), \psi(\mathrm{x}), \psi(\mathrm{y}) \in \mathrm{GS}\right)$ is such that for any $s \in S$, we have

$$
\begin{aligned}
& (\psi e)(s)=s e \\
& (\psi a)(s)=s a \\
& (\psi x)(s)=s x \\
& (\psi y)(s)=s y
\end{aligned}
$$

So ψ is a right regular representation of S .
Regular representation of a transformation semigroup
Let K denote the set of right zero elements of a semigroup S . Then, $s \cong \mathcal{T}_{k}$ if and only if
(i) for all x in K , and all a, b in S , $\mathrm{xa}=\mathrm{xb}$ implies $\mathrm{a}=\mathrm{b}$;
(ii) if α is any transformation of K, then there exists a in S such that $x \alpha=x a$ for all $x \in K$.

An element α of \mathcal{T}_{X} is idempotent if and only if it is the identity mapping when restricted to $\mathrm{X} \alpha$. Suppose that X is a set of cardinality n . Then, the full transformation semigroup T_{X} contains the symmetric group G_{x} of degree n . If $\alpha \boldsymbol{\epsilon}^{r=\mid X_{s} \text {, then }}$ the rank r of α is defined by $r=\left|X_{\alpha}\right|$, and the defect of the element a is given by $\mathrm{n}-\mathrm{r}$. If b is an element of ${ }_{X}$ of rank $\mathrm{r}<\mathrm{n}$, then there exists elements γ and δ of \mathcal{T}_{X} such that g has the rank $r+1$, δ has the rank $n-1$, and $\beta=\gamma \delta$ (we can choose δ as an idempotent, and γ different from β at only one part of $X)$. By induction, every element of \mathcal{T}_{x} of defect $\mathrm{k}(1 \leq \mathrm{k} \leq \mathrm{n}-1)$ can be expressed as the product of an element of G_{x} and k number of(idempotent) elements of defect 1, see also [17].

If $\alpha \in \mathcal{T}_{X}$ is of defect 1 , then every other element of τ_{s} of defect 1 can be expressed in the form $\lambda \alpha \mu$ with λ and μ are in G_{x}. If α is an element of ${ }_{S}$ of defect 1 , then $\left\langle\mathrm{G}_{\mathrm{x}} \alpha\right\rangle=\mathcal{T}_{S}$.

Let $\mathrm{X}=\mathrm{S}$ be a semigroup, an element $\rho \in \tau_{S}$ is said to be a right translation of S if $\mathrm{x}(\mathrm{y} \rho)=(\mathrm{xy}) \rho$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{S}$ and $\lambda \in \mathcal{T}_{X}$ is said to be a left translation of S if $(x \lambda) y=(x y) \lambda$ for any $x, y \in S$. The left and a right translations λ and ρ, respectively, are called linked if $x(y l)=(x r) y$ for all $x ; y 2 S$.

Note that $\lambda_{\mathrm{a}} \lambda=\lambda_{\mathrm{a} \lambda}$ and $\rho_{\mathrm{a}} \rho=\rho_{\mathrm{a} \rho}$, if λ and ρ are linked, then

$$
\lambda \lambda_{a}=\lambda_{a p}, \quad \rho \rho_{a}=\rho_{a \lambda}
$$

Let $S=\{e, f, g, \alpha\}$ be a semigroup with the operation "." given by the Cayley's table

\cdot	e	a	x	y
e	e	a	x	y
a	a	e	x	y
y	x	y	x	y

Cayley's table

The transformation
$\lambda=\binom{$ e f g a }{g g e g}

Research \& Reviews: Journal of Statistics and Mathematical Sciences

is a left translation which is not linked with any right translations of S. We recall the following proposition regarding the semisimple algebra.

PROPOSITION

An algebra A is a semisimple if and only if A-module of A is semisimple.

Definition

Let S be a semisimple with zero element z. The contracted algebra $F_{0}[S]$ of S over F is an algebra over F containing a basis as such that $\mathbb{Q} \cup \boldsymbol{U}$ is a subsemigroup of $\mathrm{F}_{0}[\mathrm{~S}]$ isomorphic with S . A semisimple algebra can also be regarded as a contracted semigroup algebra.

We recall the following facts regarding the representations of a semisimple algebra.

Lemma

(a) Let \mathfrak{R} be an algebra having finite order over the field F, and let \mathfrak{R} be a radical of \mathfrak{A}. Then, every non-null irreducible representation of \mathfrak{A} maps \mathfrak{A} into 0 , and so it is effectively a representation of the semisimple algebra $\mathfrak{A} / \mathfrak{A}$.
(b) Let ϕ be any faithful representation of a semisimple algebra \mathfrak{A} and let P be an $\mathrm{n} * \mathrm{n}$ matrix over $\boldsymbol{\tau}$. Then, P is nonsingular if and only if $\phi^{(n)}(P)$ is non-singular [18].

THEOREM 4.4

(6, Th. 5.7). An irreducible algebra of linear transformations is simple.
If $\mathrm{A} \in(\mathrm{F})_{\mathrm{n}}$, then the transformation $\mathrm{x} \rightarrow \mathrm{Ax}$ of a vector space V is linear transformation τ of V to V , and the mapping $\mathrm{A} \rightarrow \mathrm{A}$ is an isomorphism of $(F)_{n}$ upon the algebra $\mathscr{L}\left[\tau_{V}\right]$ of all linear transformations of V. A homomorphism ϕ of \mathfrak{A} into $(F)_{n}$ is called a representation of \mathfrak{A} of degree n over F. In other words, to each element x of \mathfrak{A} there corresponds an $n * n$ matrix $\phi(x)$ such that

$$
\begin{aligned}
& \phi(x+y)=\phi(x)+\phi(y) ; \\
& \phi(x y)=\phi(x) \phi(y) ; \\
& \phi(\alpha x)=\alpha \phi(x):
\end{aligned}
$$

for all x, y in \mathcal{T}_{N} and α in F .
The irreducible representations of semigroups
Let f be an element of \mathcal{T}_{N}. Then, f splits the set $\{1,2, ., \mathrm{n}\}$ into a number p of nonvoid disjoint subsets, each of the form $\{x: f(\mathrm{x})=\mathrm{a}\}$ for some a ϵ rang(f$)$. Obviously, f is determined by these sets and the corresponding a's. For nonvoid subset s of $\{1,2, \ldots, \mathrm{n}\}$, let s^{*} be the least element of s. Write the sets $\{x: f(x)=a\}$ in the order $S_{1}, S_{2}, \ldots, S_{p}$ where $s_{1}^{*}<s_{2}^{*}<\ldots<\mathrm{s}^{*}$, and represent f by the symbol

$$
\binom{s_{1} s_{2} \ldots s_{p}}{a_{1} a_{2} \ldots a_{p}}
$$

where $1 \underset{=}{£} \mathrm{p} \stackrel{£}{=} \mathrm{n}$, the class of sets $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{p}}$ is a decomposition of $\{1,2, \ldots, \mathrm{n}\}$ of the kind described above, and $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, a_{\mathrm{p}}$ are any distinct integers lying between 1 and n. The expression $\mathrm{s}_{1}, . ., \mathrm{s}_{\mathrm{p}}$ will always mean a decomposition of $\{1,2, \ldots, \mathrm{n}\}$ into nonvoid, disjoint subsets with $\mathrm{s}_{1}<\mathrm{s}^{*}<\ldots<\mathrm{S}^{*}$. The letters t and w will be used similarly. Also $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{p}}$ will always mean any ordered sequence of distinct integers from 1 to n; the letters c and d will be used similarly.

For $p=1,2, \ldots, n$, let \oiint_{p} be the set of all elements of whose range contains just p elements, that is,

$$
\binom{s_{1} s_{2} . . s_{p}}{a_{1} a_{2} \ldots a_{p}}
$$

for a fixed p. Strictly speaking, depends upon n as well as p. However, only one value of n will be treated at one time. The set α_{1} is obviously the symmetric group S_{n}. The set $\widehat{A}_{p_{1}}$ is a semigroup with the trivial multiplication fg=f. No other \mathbb{Q}_{p} is a subsemigroup of ${ }^{2}$. It will be convenient to have the semigroup $\widehat{\sim}_{p} U\{z\}$, with multiplication defined by
$z o z=f$ oz $=z$ of f, for all $f \in \stackrel{\Theta_{p}}{ }$
$f o g=\left\{\begin{array}{ll}f g & \text { if } \\ f g \in \widehat{A}_{p}, \\ z & \text { if } \\ f g \notin \widehat{A}_{p}\end{array}\right.$,
Using a linear algebraic result, we have the following formula regarding the rank of a linear representation of T_{n}.

Research \& Reviews: Journal of Statistics and Mathematical Sciences

THEOREM 5.1

Let M be an irreducible linear representation of T_{n}, and let $\mathrm{S}=\left\{\mathrm{f}: \mathrm{f} \in T_{n}\right.$ and $\left.\mathrm{M}(\mathrm{f})=0\right\}$, then $\operatorname{rank}\left[\mathrm{M}\left(T_{n}\right)\right]$
$=\left\{\begin{array}{ll}n^{n} & , \text { if Sis void } \\ n^{n}-\sum_{j=1}^{P} j!, \text { if Sis nonvoid, i.e., if } \mathrm{S}=\cup_{j=1}^{P} B_{j}\end{array}\right.$ 8>><

Proof

Suppose the irreducible linear representation $M: T_{n} \rightarrow L\left(T_{n}\right)$ is as given above. Since M is irreducible representation of T_{n} . Thus, using a result in, the set S is void or $S=\cup_{j=1}^{P} B_{p}$.

Since,

$$
\operatorname{dim} F\left[T_{n}\right]=\operatorname{dim} F[S]+\operatorname{dim} F\left[M\left(T_{n}\right)\right]
$$

where F is a field of characteristic 0 .
Since,

$$
\operatorname{dim} F\left[T_{n}\right]=n^{n}
$$

and,
$|S|=\left\{\begin{array}{l}0 \text { if } S \text { is void, } \\ \sum_{j=1}^{p} j!\text { if } S \text { is nonvoid. }\end{array}\right.$
We have
$\operatorname{rank} F\left[M\left(T_{n}\right)\right]=\operatorname{dim} F\left[M\left(T_{n}\right)\right]$.
Thus,

$$
\begin{aligned}
& \operatorname{rank} F\left[M\left(T_{n}\right)\right]=\operatorname{dim} F\left[\left(T_{n}\right)\right]-\operatorname{dim}(F[S])=\left\{\begin{array}{l}
n^{n}-0 \text { i } S \text { is void, } \\
n^{n}-\sum_{j=1}^{P} j!i f \text { if } \text { is nonvoid. }
\end{array}\right. \\
& \quad \operatorname{rankF}\left[M\left(T_{n}\right)\right]=\left\{\begin{array}{l}
n^{n}-0 \text { if } S \text { is void, } \\
n^{n}-\sum_{j=1}^{p} j!i f \text { S is nonvoid. }
\end{array}\right.
\end{aligned}
$$

Therefore,
This completes the proof.
Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of cardinality n and let S_{n} denote the set of all single-valued maps of X to itself. We have the following characterization of a map from S_{n} into the set of all $n * n$ matrices D_{n} over the field F, see also.

THEOREM 5.2

Let $\mathrm{M}: \mathrm{S}_{\mathrm{n}} \rightarrow \mathrm{D}_{\mathrm{n}}$ be a map defined by $\mathrm{M}(\mathrm{f})=\mathrm{A}_{\mathrm{f}} \in \mathrm{D}_{\mathrm{n}}$, forf $\in \mathrm{S}_{\left.\mathcal{Z}^{\prime}\right\}}$ Then, M forms a homomorphism of S_{n} into D_{n}. If, in particular, S_{n} is a semigroup S, then M becomes a representation of $\left.{ }^{2}\right\}$ into D_{n} (where z is a zero element).

Proof

For any two single valued maps f and g in S_{n}, the product $f g$ is also a single valued map, therefore $f g \in S_{n}$.
Moreover, since $M(f)=A_{f} \in D_{n}$ and $M(g)=A_{g} \in D_{n}$, therefore $M(f g)=A_{f g}=A_{f} . A_{g}=M(f) . M(g) \in D_{n}$. In particular, if i is the identity map

Research \& Reviews: Journal of Statistics and Mathematical Sciences

on X, then $M(i)=A_{i}=I_{n} \in D_{n}$, then we have;
$M(\mathrm{ig})=\mathrm{M}(\mathrm{g})=A_{\mathrm{g}}=I_{\mathrm{n}}: A_{\mathrm{g}}=A_{\mathrm{i}}: A_{\mathrm{g}}=\mathrm{M}(\mathrm{i}) \mathrm{M}(\mathrm{g})$, and
$M(f i)=M(f)=A_{f}=A_{f}: I_{n}=A_{f}: A_{i}=M(f): M(i)$.
Therefore, M defines a homomorphism of S_{n} into D_{n}.
If, in particular, if $\mathrm{S}_{\mathrm{n}}=\mathrm{S}=\mathcal{T}_{N}$ the semigroup of all maps from X into itself, then we can define an induced structure on the adjoined zero semigroup ${ }^{\prime} N$, where z is a zero element, i.e., for any $\mathrm{f} \in \mathcal{F}_{N}$, we have
$z . z=f . z=z . f=z \quad \forall f \in \mathcal{T}_{N}$.

The induced structure on $\mathcal{T}_{N} \cup\{z\}$ is defined as follows:
$f o g=\left\{\begin{array}{l}f g \in \mathcal{T}_{N} \text { if } f \text { and } g \text { in } \mathcal{T}_{N}, \\ z \text { if one of } f \text { and } g \text { is not in } \mathcal{T}_{N} .\end{array}\right.$
Then, the homomorphism M can be extended into a map \bar{M} of the semigroup $\bar{S}=\mathcal{T}_{N} \cup\{z\}$ into D_{n}, i.e., $\bar{M}: \bar{S} \rightarrow \mathrm{D}_{\mathrm{n}}$ is defined by
$\bar{M}(z)=M_{0}=0_{n^{*} n} \in D_{n}$,
$\bar{M}(z)=M(f) \forall f \in S$.
Therefore,
$\bar{M}(a f)=M_{a f}=M(a f)=M(a f)=a M(f)=a \bar{M}(f) \in D_{n}$,
And
$\bar{M}(f+g)=M(f+g)=A_{(f+g)}=A_{f}+A_{g}=M(f)+M(g)=\bar{M}(f)+\bar{M}(g)$,
$\bar{M}(f g)=M(f g)=A_{f g}=A_{f} \cdot A_{g}=M(f) M(g)=\bar{M}(f) \cdot \bar{M}(g)$.

Representation of a semigroup of linear transformations in green's

Relations

Two things that can be associated with an element $\alpha \epsilon_{\text {na acoo }}$ are as follows:

1. the range $X \alpha$ of α, and
2. the partition $\Pi \alpha=\alpha o \alpha^{-1}$ of X by $x \prod \alpha y(x, y \in X)$ if $\mathrm{x} \alpha=\mathrm{y} \alpha$ which defines an equivalence relation on X .

Let $\prod_{\alpha}^{\natural}$ be the natural mapping of X upon the set X / \prod_{α} of equivalence classes of $\mathrm{X} \bmod \prod_{\alpha}$. Then, $x \prod_{\alpha}^{\natural} \rightarrow x \alpha$ becomes a one-to-one mapping of X / \prod_{α} upon X α. It follows that $\left|X \prod_{\alpha}\right|=|X \alpha|$, and this cardinal number is called the rank of α.

Remark

The Ex.2.2.6 in [4] can be rewritten as follows,
Let F be a field and V be a vector space over F. By the dimension dimV of we mean the cardinal number of a basis of V over F. Let $\mathscr{L}(V)$ be the multiplicative semigroup (i.e., under the operation of composition of maps) of all linear transformations of V with each element t of $\mathrm{L}(\mathrm{V})$ we associate two subspaces of V that are given as follows:

1. the range $\mathrm{V} \tau$ of τ, consisting of all (x) ${ }^{\tau}$ with $\mathrm{x} \in \mathrm{V}$ and,
2. the null space N^{τ} of τ, consisting of all y in V such that $(\mathrm{y}) ~ \tau=0$.
(a) Let $\tau \in \mathscr{L}(V)$, and W be a subspace of V , complementary to the null space N^{τ}, so that $\mathrm{V}=$

Then, τ induces a non-singular matrix A .
Hence, $\operatorname{dim}\left(\mathrm{V}=\mathrm{N}^{\tau}\right)=\operatorname{dim}(\mathrm{W})=\operatorname{dim}\left(\mathrm{V}_{\mathrm{t}}\right)$; is called rank of t . The difference or quotient space of V modulo $\mathrm{N} \tau$ is denoted by V - N τ or by V / N (t . If dimV is finite, this notation of rank is the usual one as for the matrix A , since $V A$ is the row-space of A. Also N_{A} is the orthogonal complement of the column-space of A .

Research \& Reviews: Journal of Statistics and Mathematical Sciences

(b) Two elements of the space $\mathscr{L}\left(\mathcal{T}_{v}\right)$ are $\mathscr{L}-(\mathscr{R}-)$ equivalent if and only if they have the same range (null-space).
(c) If N and W are subspaces of V such that $\operatorname{dim}\left(V / N^{\tau}\right)=\operatorname{dimW}$, then there exists at least one element ρ of
such that $N=N \rho$ and $W=V \rho$.
(d) Two elements τ_{1} and $\tau_{2} \in \mathscr{L}(V)$ are $\mathcal{\infty}$-equivalent if and only if rank $\left(\tau_{2}\right)=r a n k\left(\tau_{2}\right)$.
(e) The Th. 2.9 holds for $\mathscr{L}(V)$ instead of \mathcal{T}_{X} if we replace "subset Y of X " by "the subspace W of V ", \mathcal{T}_{v} by dim W , "partition \mathcal{T}_{v} of X " by "subspace N of V ", and $|X / \Pi|$ by $\operatorname{dim}(\mathrm{V} / \mathrm{N})$.

Linear representation of a full transformation semigroup over a finite field

Definition

Let V beq vector space over the field $F(=C)$ the complex numbers and let the finite subset $\left\{e_{i}\right\}_{i}^{n}=1$ of V be a basis for V, i.e., $\operatorname{dim} V=n$, let ${ }_{v}$ denote the full transformation semigroup over V . The space $\mathscr{L}\left(\mathcal{T}_{v}\right)$ denotes the space of all linear transformations on V . If a is in $\mathscr{L}\left(\mathcal{T}_{v}\right)$, a linear transformations, then, each $\mathrm{a}: \mathrm{V} \rightarrow \mathrm{V}$ is represented by a square matrix $\left(\mathrm{a}_{\mathrm{ij}}\right)$ of order n . The coefficients $a_{i j}$ are complex numbers for all i and $j=1, \ldots, n$ and are obtained by
$a\left(e_{j}\right)=\sum_{i=1}^{n} a_{i j} e_{i}$
where a can be identified as a morphism which is equivalent to saying that $\operatorname{det}(\mathrm{a})=\operatorname{det}\left(\mathrm{a}_{\mathrm{ij}}\right) \neq 0$. The linear space $\mathscr{L}\left(\mathcal{T}_{s}\right)$ of full transformation semigroup can be identified with the semigroup of all transformations of degree n.

A representation $\phi: S \rightarrow \mathscr{L}\left(\mathcal{T}_{s}\right)$ is faithfull if and only if ϕ is one-to-one homomorphism. A representation ϕ of a semigroup S , of degree n over the field F , we mean a homomorphism of S into the semigroup $\mathscr{L}\left(\mathcal{T}_{F^{n}}\right)$ of all linear transformation over F^{n}, where $F^{n} \cong F[S]$, the vector space is generated by S over the field F. Thus, to each element s of S there corresponds a linear trans-

$\Phi(s t)=\Phi(s) \Phi(t)$ for all $s, t \in S$.
We denote the algebra of all linear transformations over the n-dimensional vector space F^{n} over the field F by $F\left(\mathcal{T}_{F^{n}}\right)$. Obviously, $F\left(\mathcal{T}_{F^{n}}\right)$ appears as a subspace of $\mathscr{L}\left(\mathcal{T}_{F^{n}}\right)$.

 spondence between a representation of S and that of algebra ${ }_{q}{ }_{F q}{ }_{F}$ over the finite field Fq. Of course, this correspondence preserves the reducation, decomposition and hence the full reducibility hold for such representations of S if and only if $F_{q}\left[\mathcal{T}_{F q}^{n}\right]$ is semisimple that holds if q does not divide the $\operatorname{dimF}{ }_{q}{ }_{q}=n$, (the dimension of the vector space $F_{q}{ }_{q}$ over a finite field F_{q}. There is a necessary and sufficient condition on a finite semigroup S in order that $F_{q}[S]$ is semisimple. An explicit representation of such group is obtained in. They constructed all the irreducible representations of S from those of its principal factors of the full transformation semigroup on a finite set.

If F is algebraically closed, then there are no division algebras over F other than F itself, and in this case Wedderbun's second theorem tells us that every simple algebra \wedge over F is isomorphic with the full transformation semigroup algebra \wedge of degree n for some positive integer n .

Any isomorphism of \wedge upon semigroup \wedge is a representation of \wedge, and gives the irreducible representation of \wedge. Let \wedge be an algebra of order n over F, and let ϕ be a representation of αx° of degree r over F, and let m be a positive integer. For each element $\phi^{(m)}$ of $\mathscr{L}\left(\wedge^{m}\right)$, construct a transformation $\phi_{i}^{(m)} \in \mathscr{L}\left(\wedge^{m}\left(F^{r}\right)\right)$.
such that

$$
\begin{aligned}
& \Phi^{(m)}=\sum_{i=1}^{r} a_{m i} \Phi_{i}^{(m)} \\
& \Phi_{i}^{(m)}, \Phi_{j}^{(m)} \in \mathscr{L}\left(\wedge^{m}\left(F^{r}\right)\right),
\end{aligned}
$$

if
then

$$
\Phi^{(m)}=\sum_{\substack{i, j=1 \\ i+j=k}}^{r} a_{m i} b_{m j} \Phi_{i}^{(m)} \Phi_{j}^{(m)}
$$

The $\operatorname{map} \phi^{(m)}$ is called the representation of ${ }^{L(L m)}$ associated with the representation ϕ of \wedge. The following lemma is due to Van der Waerden's modern algebra.

Lemma

Research \& Reviews: Journal of Statistics and Mathematical Sciences

Let D be division algebra, and let m be a positive integer. The right regular representation ρ of D is an irreducible, and the only irreducible representation of the simple algebra $\mathscr{L}\left(D^{m}\right)$ is just the representation $\rho^{(m)}$ of $\mathscr{\infty}\left(D^{m}\right)$ associated with ρ.

THEOREM 7.3

Let $\wedge \sigma(\sigma=1, \ldots, c)$ be the simple components of a semisimple algebra \wedge. By Wedderburn's second theorem, each σ may be regarded as a full transformation $\mathscr{L}(D \sigma)^{m \sigma}$ of some degree m_{σ} over the division algebra $\mathscr{L}^{(\wedge \sigma)}$. Let ρ_{σ} be the regular representation of $D \sigma$ and $\rho \sigma^{(m \sigma)}$ be the representation of $\mathscr{L}(\wedge \sigma)$ associated with $\rho \sigma$ then $\rho \sigma^{(m \sigma)}$ is the only irreducible representation of $\rho \sigma$. Extending $(\rho \sigma)^{(\mathrm{mol}}$ to $=\Sigma^{\circ}$ by defining $\phi \sigma(\mathrm{a})=(\rho \sigma)^{(\mathrm{mo})}(\mathrm{a})$ if $a=\sum_{n} a_{r}$ is the unique expression of the element a of \wedge as a sum of elements a_{r} of the \wedge_{r}. Then $\left\{\phi_{1}, \ldots, \phi_{c}\right\}$ is the complete set of inequivalent irreducible representations of $D \sigma$. If d σ is the order of $D \sigma$, then the degree of ϕ_{σ} is $d_{\sigma} \cdot m_{\sigma}$. If F is algebraically closed, each Ds reduces to F and we may regard L as a direct sum of full transformation semigroup algebra $八$ over F . The irreducible representation of \wedge are then just the projections of τ upon its various components (see Th.7.3 in [4]).

THEOREM 7.4

Let τ be a linear operator on \wedge with an algebra \wedge of finite order over a field F .
If $\mathrm{n}>\mathrm{m}$, then there exists a non-zero linear transformation $\sigma: \wedge^{n} \rightarrow \wedge^{m}$ such that $\tau=0$. There exists a non-null transformation $\gamma: \wedge^{n} \rightarrow \wedge^{m}$ (over ${ }^{\gamma \tau}$) such that $\gamma \tau=0$, for every $\mathrm{m}>\mathrm{n}$.

Proof

Let $\mathrm{n}>\mathrm{m}$ and $\tau=\tau_{1} \oplus \tau_{2}$ with τ_{2} an operator on τ_{2} and τ_{2} a linear transformation from \wedge^{n-m} into \wedge^{n-m} (over $\tau^{\tau_{1}}$). Suppose that ${ }^{\tau_{1}}$ is left divisor of zero in $\mathscr{L}\left(\wedge^{m}\right)$, then there exists $\sigma_{1} \neq 0$ in $\mathscr{L}\left(\wedge^{m}\right)$ such that ${ }^{\tau_{1}} \sigma_{1}=0$. We may take $\sigma=(\sigma 1,0)$. Hence we may assume that ${ }^{\tau_{1}}$ is not left divisor of zero in $\mathscr{L}\left(\wedge^{m}\right)$. By Lemma 5.8, that can be applied to the algebra $\mathscr{L}\left(\wedge^{m}\right)$, we have that the algebra ${ }^{\iota}{ }_{1}$ contains a left identity element i with respect to which ${ }^{\tau_{1}}$ has a two-sided inverse ρ_{1} in $\boldsymbol{\iota}_{1}$, i.e. $\rho_{1} \tau_{1}=\tau_{1} \rho_{1}=$ i. We may take $\sigma=\left(-\rho_{1} \wedge^{n} \sigma_{2}, \sigma_{2}\right)$, where σ_{2} is any non-singular linear transformation from \wedge^{m} into \wedge^{m} over the algebra \wedge.

Then,
since $\tau_{\sigma_{2}} \in^{\mathscr{L}\left(\wedge^{m}\right)}$ and i is the identity element in $\mathscr{L}\left(\wedge^{m}\right)$.
One can similarly prove that, if $\mathrm{m}>\mathrm{n}$, then there exists a non-null transformation $\gamma: \wedge^{n} \rightarrow \wedge^{m}$ such that $\gamma \tau=0$
Representation of a full transformation semigroup over a finite field
Let θ be a root of some irreducible polynomial of degree m over a finite field F_{q} (or the Galois field GF(q)), then the set $\{1, \theta$, $\left.\theta^{2} \ldots, \theta^{m-1}\right\}$ becomes a basis for the vector space $\mathrm{F}_{\mathrm{q}}^{\mathrm{q}}$ over F_{q} and is called a polynomial basis for F_{q}. The dimension of the vector space $F_{q}{ }^{m}$ over F_{q} is m. Let $\theta \in F_{q}{ }^{m}$ such that the set
\triangle © $=\left\{\theta^{q^{i}} \mid 0 \leq i<m\right\}=\left\{\theta, \theta^{q}, \theta^{q^{2}}, \ldots ., \theta^{q^{m-1}}\right\}$
form a basis for $\mathrm{F}_{\mathrm{q}}{ }^{m}$. Let $\mathrm{a}=\alpha=a_{0} \theta+a_{1} \theta^{q}+a_{2} \theta^{q^{2}}+\ldots+a_{m-1} \theta^{q^{m-1}}$ so that a be represented by the vector ($\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{m}-1}$) and let α^{α} be represented by the shifted vector $\left(\mathrm{a}_{\mathrm{m}-1}, \mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}-2}\right)$. The normal basis exists for any extension ${ }^{n_{n} \text { field }}=\left\{\theta, \theta^{q}, \theta^{q}, \ldots \ldots, \theta^{q}\right.$ of F_{q}.

Consider the vector space $V=F_{q}{ }^{m}$ over F_{q} (where q is a prime), and let be a basis for V. Let TB be the full transformation semigroup upon the basis B. Then $\mid=m^{m}$.

Since $\alpha=a_{0} \theta+a_{1} \theta^{q}+a_{2} \theta^{q}+\ldots+a_{m-1} \theta^{q^{m-1}}$ is an element of $\mathrm{V}=\mathrm{Fqm}$ as described above. Then the element $\sigma \in \otimes \otimes$ can be defined by $\sigma(\alpha)=\theta^{q}, \sigma^{2}(\alpha)=\theta^{q^{2}}, \ldots, \sigma^{m-1}(\alpha)=\theta^{q^{m-1}}$. If $\left(a_{0}, a_{1}, a_{2}, \ldots, a_{m-1}\right) \in \mathrm{V}$, then $\sigma(\mathrm{a}) \in \otimes \circlearrowleft$, where

$$
\begin{aligned}
\sigma(\alpha) & =\sigma\left(a_{0}, a_{1}, a_{2}, \ldots, a_{m-1}\right) \\
& =\left(a_{m-1}, a_{0}, a_{1}, a_{2}, \ldots, a_{m-2}\right)
\end{aligned}
$$

i.e.,

$$
\sigma(\alpha)=\sigma\left(\begin{array}{lll}
a_{0}, & a_{1}, & a_{2}, \ldots, \\
a_{m-1}, & a_{0}, & a_{1}, \ldots, \\
a_{m-2}
\end{array}\right) \in \mathcal{T}_{\mathrm{CB}}
$$

It is obvious to say that $F_{q}{ }^{m}=F^{m}$. S is a full transformation semigroup over V * with a dual basis $\overline{Q^{B}}=\left\{\sigma_{0}=1, \sigma, \sigma_{2}, . ., \sigma^{m-1}\right\}$ of $V *$ then there exists a mapping $\phi_{a}: \Delta \rightarrow S$ which becomes an isomorphism.

Since $\otimes \Delta$ is a finite full transformation semigroup on the basis B of V over the finite field F_{q}. Therefore $F_{q}[\Omega]$ becomes an algebra of $\otimes \rightarrow$ over F_{q}. Then, there is a natural one-to-one correspondence between the representation of TB over $F q$ and those of $\mathrm{F}_{\mathrm{q}}[\otimes \ggg>]$, which preserves equivalence, reduction and decomposition into irreducible constituents.

Research \& Reviews: Journal of Statistics and Mathematical Sciences

 representation of TB is full reducible into irreducible one.

Let F_{q} be a finite field, and B be a basis for F_{q}, where $(m, q)=1$. (i.e., m, q are relatively prime).
Then, we have the following interpretation of the Maschke's theorem regarding the algebra $F_{q}[ब>]$ over the finite field F_{q}.

THEOREM 8.1

Let $S=\circlearrowleft$ be a finite full transformation semigroup over basis of बce of order mm.
Then, the semigroup algebra $F_{q}[ब>]$ over $F q$ is semisimple if and only if the characteristic q of F_{q} does not divides the order mm of the full transformation semigroup

Let \wedge be an algebra of order r over the vector space $V=F_{q}{ }^{m}$, and let n be another positive integer different from m. Denote by the full matrix algebra of all nn matrices over λ, with the additions and multiplication of matrices, and of the multiplication of matrix by a scalar in Fqm. Then, the algebra algebra of degree n over Fqm.

An algebra L over a field F is called division algebra if \wedge / O is a group under multiplication. A result regarding the existence of an isomorphism between a full matrix algebra and the space of all the linear transformations over the vector space $F_{q}{ }^{m}$, is as follows.

THEOREM 8.2

Let $F_{q}{ }^{m}$ be a vector space over a finite field F_{q}. Then, there is an isomorphism from the space of full matrix algebra $\left(F_{q}\right)_{m}$ to the space $\mathscr{L}\left(F_{q}^{m}\right)$ of all the linear transformations on $F_{q}{ }^{m}$.

Proof

The set of all m-dimensional vector space (1m matrices) over F_{q} is an m-dimensional vector space $F_{q}{ }^{m}$ over F_{q}. The natural basis of $F_{q}{ }^{m}$ consists of the m vectors $v_{1}=\theta, v_{2}=\theta^{q}, v_{3}=\theta^{q 2}, \ldots, v m=\theta^{q m-1}$, where vi has the identity element 1 of $F q$ for its ith component, and has 0 for the remaining components.

If $A \in\left(F_{q}\right)_{m}$, then the transformation $t: F_{q}{ }^{m} \rightarrow F_{q}{ }^{m}$ given by $\tau\left(v_{i}\right)=$ Avi is a linear transformation t of $F_{q}{ }^{m}$ into itself and the mapping ϕ : $\left(\mathrm{F}_{\mathrm{q}}\right)_{\mathrm{m}} \rightarrow \mathscr{L}\left(F_{q}^{m}\right)$ is an isomorphism of $\left(\mathrm{F}_{\mathrm{q}}\right)_{\mathrm{m}}$ upon the algebra $\mathscr{L}\left(F_{q}^{m}\right)$ of all linear transformations of Fqm into itself. The ith row of A is the vector ${ }^{\tau}\left(\mathrm{v}_{\mathrm{i}}\right)$.

Conversely, if $\mathrm{F}_{\mathrm{q}}{ }^{m}$ is any m -dimensional vector space, and we choose a basis $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}}\right\}$ of $\mathrm{F}_{\mathrm{q}}{ }^{m}$, then each linear transformation t of $F_{q}{ }^{m}$ determines a matrix $A=\left(\alpha_{i j}\right)$ from the expression
for the m vectors ${ }^{\tau}\left(v_{i}\right) ;(1 \leq i \leq m)$ as linear combination of the basis vectors. Then, the mapping $\psi: \mathscr{L}\left(F_{q}^{m}\right) \rightarrow\left(F_{q}\right)^{m}$ becomes an isomorphism of $\mathscr{L}\left(F_{q}^{m}\right)$ upon $\left(F_{q}\right)^{m}$.

CONCLUSION

A combinatorial result about the rank of a representation of the full transformation semigroup is obtained. It seems that for any homomorphism between the set of single-valued maps and the set of all nn matrices over a field F becomes a representation when the set of single valued maps is replaced by a full transformation semigroup adjoined with a zero element z. There is a one-one correspondence between the set of all representations of some finite semigroup S and those of the algebra of a full transformation semigroup over a finite dimensional vector space over a finite field. Consequently, we observed an isomorphism between the full matrix algebra $\left(F_{q}\right)^{m}$ and the set of all linear transformations on $F_{q}{ }^{m}$ is obtained.

REFERENCES

1. Serre JP. Linear representations of finite groups, translated from the second French edition by Leonard L. Scott. Graduate Texts in Mathematics. 1977;42:172.
2. Clifford AH. Matrix representations of completely simple semigroups. American J Math. 1942;64:327-342.
3. Clifford AH. Basic representations of completely simple semigroups. American J Math. 1960;82:430-434.
4. A. H. Clifford and G. B. Preston, The algebric theory of semigroups, Mathematical surveys of the Amer. Math. Soc. 1961.
5. \quad Stoll RR. Representations of finite simple semigroups. Duke Mathe J. 1944;11:251-265.
6. W. D. Munn, Irreducible matrix representations of semigroups, Quarterly J. Math. Oxford. 1960;11:295-309.

Research \& Reviews: Journal of Statistics and Mathematical Sciences

7. W. D. Munn, On semigroup algebras, Proc Cambridge Plil, Soc. 1955b;51:1-15.
8. W. D. Munn, Semigroups and their algebras, Dissertation, Cambridge University. 1955a.
9. Hewitt E, et al. The irreducible representations of a semigroup related to the symmetric group. Illinois J Math. 1957;1:188213.
10. G. L. Mullen, et al. Finite Fields and Applications, Amer. Math. Soc. Student Mathematical library. 2007;41.
11. Lallement G, Petrich M. Irreducible matrix representations of finite semigroups. Transactions of the American Math Soc. 1969;139:393-412.
12. O. Ganyushkin, et al. Classical Finite Transformation Semigroups: An Introduction, Springer Science and Business Media. 2008.
13. Munn WD. Matrix representations of semigroups. InMathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press. 1957; 53:5-12.
14. Nagy A. On faithful representations of finite semigroups S of degree| $\mathrm{S} \mid$ over the fields. Int J Algebra. 2013;7:115-29
15. Nagy A, et al. Finite Semigroups whose semigroup algebra over a field has a trivial right annihilator. Int J Contemporary Mathe Sci. 2014;9:25-36.
16. R. J. Warne, Matrix Representation of d-simple semigroups, Trans. Amer. Math. Soc. 1963;106:427-435.
17. N. L. Biggs, Finite group of Automorphisms, Cambridge University press, London. 1971;13.
