DOI: 10.4172/2321-6212.1000222

A Brief Review on Nanoparticles: Types of Platforms, Biological Synthesis and Applications

Saad Haroon Anwar*

Department of Physics, Materials Research Laboratory, University of Peshawar, Peshawar 25120, Pakistan

Review Article

Received: 06/05/2018 Accepted: 29/05/2018 Published: 10/06/2018

*For Correspondence

Saad Haroon Anwar, Department of Physics, Materials Research Laboratory, University of Peshawar, Peshawar 25120, Pakistan, Tel: +923428005441.

Email: saadanwar680@yahoo.com

Keywords: Nanoparticles, Biological method, Reducing agent, Platforms

ABSTRACT

Nanotechnology refers to the engineering and exploitation of materials whose size ranges from 1-100 nm. There are several types of nanoparticles platforms which are differentiated based on their size, shape, composition and their functionalities. These platforms include liposomes, Albumin-bound, Polymeric, Quantum Dots and Iron Oxide. Biological method for the synthesis of nanoparticles is easy, cost-effective and environmental friendly. Biological systems have the capabilities of converting metal ions into metal nanoparticles in a very friendly manner. Nanoparticles can be used in Fluorescent biological labels, drug and gene delivery, tissue engineering etc. Furthermore, nanoparticles have vast applications in daily life.

INTRODUCTION

In modern research, nanotechnology has become an arena with budding applications in electronics and medicines. Nanotechnology is referring to the engineering and exploitation of materials whose size varies from 1-100 nm ^[1]. Nanoparticles are microscopic objects with at least one dimension less than 100 nm ^[2]. Due to their relatively large surface area, nanoparticles often exist with distinctive size dependent properties ^[3]. Moreover, a particle at nanoscale has length smaller than de Broglie wavelength of the charge carrier (electrons and holes) or the wavelength of light. So, at that length the periodic boundary conditions of crystalline particles vanishes. As a result, the physical properties of nanoparticles become quite different from bulk materials, which yields interesting and new applications. For example, nanoparticles are injected in matrix materials which are used as carriers for delivering drug molecules ^[2,4,5]. At present time, various metallic nanomaterials are being engineered using copper, zinc, titanium, magnesium, gold, alginate and silver ^[6]. In this review, we have discussed the different types of platforms of nanoparticles. General approaches to the synthesis of nanoparticles by using biological methods and the uses of nanoparticles in medicinal applications as well as in daily life routine were discussed.

Platforms of Nanoparticles

There are diverse types of NPs platforms which differs in size, shape, compositions, and functionalities. These nanoparticles platforms are discussed below:

Liposomes: Liposomes are the first platform for nanoparticles. In 1965, liposomes were described as a model of cellular membranes ^[7]. After that, liposomes were used for the genetic and drug delivery. Liposomes are vesicles in spherical shape which contains lipids of single or multiple bilayer structure that can assemble itself in aqueous systems ^[8]. Liposomes can be used for targeting ligands to upsurge the buildup of diagnostic and therapeutic agents within anticipated cells. Now there are 12 liposome-based therapeutic drugs which are clinically approved.

Albumin-bound: Albumin-Bound Nanoparticles (NAB) uses the endogenous albumin trails which transports hydrophobic molecules in the bloodstream ^[9]. It quandaries with hydrophobic molecules with non-covalent reversible binding and dodging solvent-based toxicities for therapeutics ^[10]. So, this platform has adapted for drug delivery.

Polymeric: Polymeric nanoparticles are formed from the biocompatible and biodegradable polymers which are used as a therapeutic carrier ^[11]. Polymeric nanoparticles are verbalized through block-copolymers of diverse hydrophobicity ^[12]. These nanoparticle design are useful because of slow and controlled released of drugs at required sites.

Quantum dots: Quantum dots (QDs) are semiconductor particles and their size is less than 10 nm in diameter. QDs shows unique size-dependent electronic and optical properties ^[13]. Mostly the quantum dots consist of cadmium selenide (CdSe) as core and a zinc selenide (ZnS) as cap (or shell) ^[14]. They are used in biological research as fluorescence imaging cell labeling and biomolecule tracking.

Iron oxide: Iron oxide NPs are studied as a passive and active targeting imaging agent because they are superparamagnetic. They have iron oxide core with a hydrophilic coat of dextran or other biocompatible compound to increase their stability ^[15,16]. They are mostly used in MRI. Till now, two SPIO agents, ferumoxides (120-180 nm) and ferucarbotran (60 nm) are clinically approved for MRI.

Synthesis Routes of Nanoparticle

Nanoparticles can be mainly synthesized by three routes i.e. chemical route, physical route and biological route. Although fabrication of nanoparticles by chemical route is quick process and results in large number of nanoparticles but in this method toxic chemicals are used for the stabilizing and capping of nanoparticles which leads to the creation of non-ecofriendly environment. Physical method is usually expensive and involve complex experimental instrument for the fabrication of nanoparticles. Furthermore, the nanoparticles synthesized from chemical and physical methods are not used in medicines. During the past decade, it was observed that many biological systems have the capabilities of converting metal ions into metal nanoparticles by the reductive capacities of the proteins and metabolites present in these organisms. Syntheses of nanoparticles by biological methods are easy, cost-effective and environmental friendly (**Figure 1**).

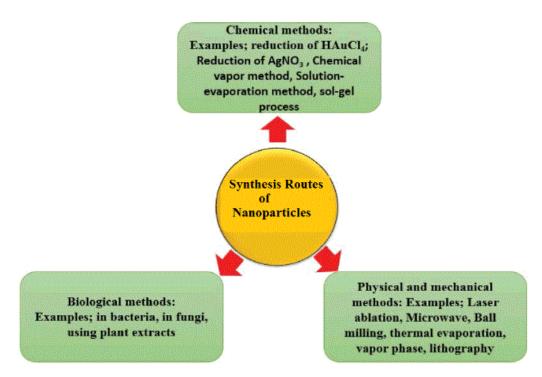


Figure 1. Different Routes for Synthesis of Nanoparticles.

BIOLOGICAL ROUTE FOR THE SYNTHESIS OF NANOPARTICLES

Synthesis of Nanoparticles from Algae

In algae, polysaccharide can reduce and stabilize metal nanoparticles. The stabilization provided by polysaccharides relies on the presence of multiple binding sites along the polysaccharide chain to facilitate attachment to the metals surface, thereby effectively trapping the metal nanoparticle and conferring significant protection against aggregation and chemical modification. Silver nanoparticles have been synthesized by using different polysaccharide e.g. starch ^[17-19], chitosan ^[20], natural gums ^[21-23], marine polysaccharides ^[24], and hyaluronan ^[25]. In all these cases polymer act as a both stabilizer and reducing agent. Gold nanoparticles, gold and silicagold bionanocomposites can be synthesized from seaweeds, microalgae such as diatoms (Navicula atomus and Diadesmis gallica) ^[26]. Gold, silver and Au/Ag bimetallic nanoparticles can be synthesized from Spirulina platensis (also known as edible blue-green alga) ^[27].

DOI: 10.4172/2321-6212.1000222

Synthesis of Nanoparticles from Fungi

Fungi contain enzymes and proteins, which have the capabilities of reducing metal ions into nanoparticles and then behaving as a stabilizer for nanoparticles. Fungi produces large amount of proteins, due to which the conversion of metal salts into metal nanoparticles is very fast. *A. fumigates* ^[28] and Phoma sp. ^[29] can be used for extracellular synthesis of silver nanoparticles. Polydispersed silver nanoparticles of 5 to 40 nm was synthesized from the fungus known as *Trichoderma viride* at about 27 °C, which shows absorption band at 420 nm in UV-visible spectrum ^[30]. Gold nanoparticles have been synthesized in the presence of the fungus *Cylindrocladium floridanum*. It was noted that in 7 days, the fungi accumulated face-centered cubic (FCC) (111)-oriented crystalline gold nanoparticles on the surface of the mycelia. The synthesis of gold nanoparticles were also synthesized from the characteristic peak on UV-Vis spectrum, which appears at 540 nm in UV-Vis region ^[31]. Gold nanoparticles were also synthesized from the nanoparticles have been synthesized from *F. oxysporum* and *Verticillium* sp ^[33]. It has been reported that Schizosaccharomyces pombe and Candida glabrata can reduce cadmium salt into CdS nanoparticles in solution ^[34].

Synthesis of Nanoparticles from Yeast

Yeast strains possess more benefits over bacteria because of their mass production of NPs and easy to control yeasts in laboratory circumstances, the synthesis of numerous enzymes and rapid growth with the use of simple nutrients ^[35]. It was also reported that with an employment of silver tolerant yeast strain MKY3, hexagonal silver nanoparticles (2-5 nm) were produced extracellularly ^[36]. The incubation of Yarrowia lipolytica cells was done with changed concentrations of chloroauric acid and formed cell-related gold NPs and nanoplates. Moreover, it is found out that the quantity of cells and the utilized salt concentrations can affect the size of NPs ^[37]. Similarly, to fabricate an air electrode showing outstanding electro catalytic activity for oxygen decrease (ORR), zirconium phosphate with a synthesized mesoporous figuration with the use of yeast as bio template was employed ^[38].

Synthesis of Nanoparticles from Bacteria

Bacteria possess remarkable ability to reduce heavy metal ions and are one of the best candidates for nanoparticle synthesis. It was reported that ferric ion can be reduce to ferrous state by *Thiobacillus ferroxidans*, *T. thiooxidans*, and *Sulfolobus acidocaldarius* when growing on elemental sulfur as an energy source ^[39]. In recent study, pure gold nanoparticles were produced by the bacterium *Delftia acidovorans* in which the production of a small non-ribosomal peptide, delftibactin were responsible for generating the gold nanoparticles ^[40]. The extracellular formation of gold nanoparticles of 10-20 nm size was synthesized by the bacterium Rhodo Pseudomonas capsulate. These nanoparticles were synthesised by an NADH-Dependant Reductase ^[41]. It has been illustrated that bacteria found at Alpine sites have the capability to produce zero valent palladium (PdO) nanoparticles. It was found that Pseudomonas cells were involved in producing catalytically active nanoparticles ^[42]. Copper nanoparticles were found di cult to synthesize because copper at nanoscale are unstable. In 2013, pure and stable copper nanoparticles were produced by using *Morganella Morganii*. It was stated that *M. Morganii* synthesizes the Cu nanoparticles intracellularly by uptake of the Cu ions and subsequent binding of the ions to either a metal ion reductase or similar protein. This causes the reduction of the metallic ion to metallic CuO which then accumulates extracellularly as nanoparticles once effluxed out of the cell ^[43].

Synthesis of Nanoparticles from Plants

Syntheses of nanoparticles from plants are useful because it produces large number of nanoparticles. The reducing and stabilizing agents are present in plants by nature. It has been reported that polymorphic gold nanoparticles can be synthesized from *Citrus limon, Murraya koenigii* Linn. leaves, and *Canna indica* (red), *Quisqualis indica* pink owers. These nanoparticles were stable and 30-130 nm in size ^[44]. Gold and silver nanoparticles were synthesized from *Lonicera japonica* plant leaf extract. Among them silver nanoparticles were 36-72 nm in size and their shape was spherical to plate-like poly-shaped, while gold nanoparticles synthesized were poly-shaped nanoplates of 40-92 nm in size. It was found that carbohydrates, polyphenols, and pro-tein were responsible for the reduction of metal ions into nanoparticles ^[45]. Magnolia kobus leaf extract was used as reducing agent to reduce copper ions to nanoparticles and their antibacterial activity was evaluated against *Escherichia coli*^[46]. Ag, Au and Pt nanoparticles can be synthesized from gum kondagogu (*Cochlospermum gossypium*). Among them silver nanoparticles formed by different organisms. The table also illustrates the location of the nanoparticles in relation to the cells and the suggested method of synthesis (**Figure 2**).

DOI: 10.4172/2321-6212.1000222

Table 1. The Table Shows the Synthesis of Nanoparticles, Their Synthesis Location and Their Synthesis Method.

Organism	Nanoparticles	Location	Method	Ref
Bacteria				
Thermomonospora sp.	Au	Extracellular	Reduction	[48]
Rhodococcus species	Au	Intracellular	Reduction	[49]
Escherichia coli	Pd, Pt	Extracellular	Reduction	[50]
Rhodopseudomonas capsulata	Au	Extracellular	Reduction	[42]
Pseudomonas aeruginosa	Au	Extracellular	Reduction	[51]
Delftiaacidovorans	Au	Extracellular	Reduction	[41]
Bacillus licheniformis	Ag	Intracellular	Reduction	[43]
Shewanella sp.	AsS	Extracellular	Reduction	[52]
Shewanella sp.	Se	Extracellular	Reduction	[53]
Desulfovibriode sulfuricans	Pd	Extracellular	Reduction	[54]
Bacillus sp.	Ag	Intracellular	Reduction	[55]
Fungi				
Fusariumoxysporum	Ag	Extracellular	Reduction	[56]
Fusariumoxysporum	Pt	Extracellular	Reduction	[56]
Fusariumoxysporum	Au	Intracellular	Reduction	[57]
Aspergillusfumigatus	Ag	Extracellular	Reduction	[29]
Verticillium sp.	Au	Intracellular	Reduction	[44]
Plants				
Aspergillus avus	Ag	Extracellular	Reduction	[58]
Acalyphaindica leaf extract	Ag	Extracellular	Reduction	[59]
Medicagosativa seed exudate	Ag	Extracellular	Reduction	[60]
Cymbopogon exuosus extract	Au	Extracellular	Reduction	[61]
Live Alfalfa plants	Au11	Intracellular	-	[62]
Magnolia kobus leaf broth	Ag	Extracellular	Reduction	[63]

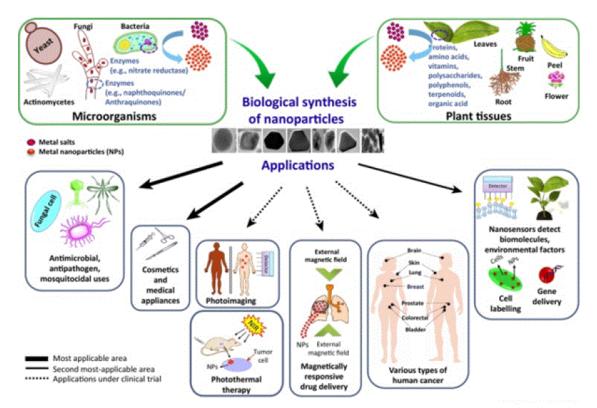


Figure 2. Biological synthesis of nanoparticles and their applications [64].

DOI: 10.4172/2321-6212.1000222

Medicinal Applications of Nanoparticles

They are used in Fluorescent biological labels ^[65-67], drug and gene de-livery ^[68,69]. They are used for the bio detection of pathogens ^[70] and for the detection of proteins ^[71]. Nanoparticles can be intended for the probing of DNA structure ^[72] and tissue engineering ^[73,74]. Nanoparticles can be used for tumor destruction via heating (hyperthermia) ^[75]. They help in the parting and refinement of molecules and cells ^[76], MRI contrast enhancement ^[77] and phagokinetic studies ^[78]. Other applications regarding manufacturing and materials, energy and electronics are: Carbon tetrachloride trash in water can be cleaned up by using iron nanoparticles. Iron oxide are helpful in cleaning of arsenic from water wells. platinum-cobalt nanoparticles catalyst is used in fuel cell which produces more catalytic activity than pure platinum. Copper nanoparticles are more reliable in space mission and other high stress environment. The power of battery can be increased by coating silicon nanoparticles over anodes of lithium ion batteries. Semiconductors nanoparticles can be used in a low temperature printing process that helps to produce low cost solar cells.

DAILY LIFE APPLICATIONS

Nanoparticles are also used in routine life in following ways:

Sports Equipment

Nanoparticles are added to materials to make them stronger whilst often being lighter. They have been used in tennis rackets, golf clubs and shoes.

Nanoparticles in Dyes and Veneers

Dyes and Veneers industry is rising gradually round the orb. Dyes and Veneers not only assist the determination of embellishment but also a means to shield treasured metals and buildings from deterioration. Nanotechnology in Dyes and Veneers talents to justify all desire possessions ^[79]. New paint skill contests bacterial and fungal evolution with nanoscale Ag. AgNPs in wall paint thwart the creation of mold exclusive buildings and the evolution of algae on external walls. Ag inhibits the several stages of cell breakdown; it abolishes a wide range of germs and makes it grim for germs to develop confrontation ^[80]. NPs are so minor that they can establish themselves faithfully sufficient and pledge organized to form a molecularly wrapped sur-face. The presence and practicality of nanoparticles takes many benefits like healthier surface appearance, decent chemical confrontation, informal to clean, shielding effect against fog, high performance coating, self-cleaning etc.

Nanoparticles in Textiles and Clothing

Within the last span, Nanotechnology based progress in textile laments, yarns, and fabric finishing have directed to the growth of numerous new and enhanced textile products. Freshly, a nano-based technology has been developed by swiss company Scholler to yield a new brand of fabrics called soft-shells, which is a functional stretch multi-layer fabric. Furthermore, several antimicrobial textile treatments are presently being fashioned that can play very noteworthy characters in fortification against a wide range of physical/chemical/biological terrorizations. Nano-based textile composite materials encompass another gifted sector, which is leading the advances of novel materials for engineering applications.

Nanoparticles in Cosmetics

Nanotechnology and nanomaterials are found to be useful in several cosmetics products like conditioners, make up, suntan lotion and hair care products. Cosmetics are applied to the stratum corneum, known as dead cells, which is used to shield the body from the in-filtration of foreign materials including cosmetics ^[81]. The appearance of skin can be improved by nanocarrier system which empowers the cosmetic agents to breach the skin layers where they stimulate skin metabolism. To increase the concentration of active agents in cosmetics liposomes (vitamin A, E and CoQ10) are used ^[82].

Nanoparticles in Nutrition Science

Nanotechnology has become one of the utmost hopeful technologies to transfigure conservative food science and the food industry. Nanotechnology-assisted dispensation and packaging has evidenced its capability in food systems. Nanoparticles can be produced by different groundwork technology with different physical possessions that could be used in food. Present scientific regulation of food nanotechnology is branded by frequent worries concerning risk characteristics. Functionality of food nanotechnology determines its range of applicability. Food nanotechnology can affect the bioavailability and nutritional value of food based on its functions. The biological properties of nanomaterials are mainly dependent on their physicochemical parameters. The main association of nanotechnology and food industry is that nanotechnology is enhancing food security, refining flavor, increasing storage life, nutrient delivery and serving functional foods ^[83].

Catalytic Use of Nanoparticles

Catalysis is essential use of metal NPs. Because of the large surface area of nanoparticles, it shows effective potential as a catalyst. Several investigators suggested that metal nanoparticles are very useful catalysts due to the reason that substantial number of atoms remains at the surface, so these surface atoms is available for the chemical transformation of substrate.

DOI: 10.4172/2321-6212.1000222

Different nanomaterials are used as a catalyst including metals and its oxides, sulfides and silicates. Catalyst activity can be defined by Turn over Number (TON) and its efficiency by Turn over Frequency (TOF)^[84].

CONCLUSIONS

In this review, we presented a brief overview about NPs, types of nanoparticles platforms, their biological synthesis and applications. Due to their small size, NPs have large surface area, which make them suitable candidate for various applications. Different biological methods for the synthesis of nanoparticles are also brie y described in the review. Furthermore, medicinal applications and its uses in routine life are brie y discussed in the review.

REFERENCES

- 1. Whatmore RW. Nanotechnology what is it? Should we be worried?, Occup Med 2006;56:295-299.
- 2. Garg A, et al. Formulation, characterization and application on nanoparticle: a review. Der Pharmacia Sinica 2011;2:17-26.
- 3. Akbari B, et al. Particle size characterization of nanoparticles a practical approach, Iran J Mater Sci Eng 2011;8:48-56.
- 4. Mohanraj V and Chen Y. Review on nanoparticles. Trop J Pharm Res 2006;5:561-573.
- 5. Manmode AS, et al. Nanoparticles-tremendous therapeutic potential: a review, Int J Pharm Tech Res 2009;1:1020-1027.
- 6. Hasan S. A review on nanoparticles: their synthesis and types. Res J Rec Sci 2015;4:9-11.
- 7. Bangham A. Liposomes: the babraham connection. Chem Physics Lipids 1993;64:275-285.
- 8. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nature Rev Drug Discovery 2005;4:145.
- 9. Hawkins MJ, Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Delivery Rev 2008;60:876-885.
- 10. Gradishar WJ, et al. Original reports-breast cancer-phase iii trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with metastatic breast cancer. J Clin Oncol 2005;23:7794-7803.
- 11. Gref R, et al. Biodegradable long-circulating polymeric nanospheres. Sci 1994;263:1600-1603.
- 12. Farokhzad OC, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Nat Acad Sci 2006;103:6315-6320.
- 13. Collier C, et al. Nanocrystal superlattices. Ann Rev Phys Chem 1998;49:371-404.
- 14. Jovin TM. Quantum dots finally come of age. Nat Biotechnol 2003;21-32-33.
- 15. Weissleder R. Molecular imaging in cancer. Science 2006;312:1168-1171.
- 16. Daniel MC and Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004;104:293-346.
- 17. Nair LS and Laurencin CT. Silver nanoparticles: synthesis and therapeutic applications. J Biomed Nanotechnol 2007;3:301-316.
- 18. Konwarh R, et al. Effect of sonication and aging on the templating attribute of starch for green silver nanoparticles and their interactions at bio-interface. Carbohyd Polym 2011;83:1245-1252.
- 19. Mohanty S, et al. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine 2012;8:916-924.
- 20. Vigneshwaran N, et al. A novel one-pot green synthesis of stable silver nanoparticles using soluble starch. Carbohyd Res 2006;341:2012-2018.
- 21. Tran HV, et al. Synthesis, characterization, antibacterial and antiproliferative activities of monodisperse chitosan-based silver nanoparticles. Colloid Surface A 2010;360:32-40.
- 22. Gils PS, et al. Designing of silver nanoparticles in gum arabic based semi-ipn hydrogel. Int J Biol Macromol 2010;46:237-244.
- 23. Kora AJ, et al. Gum kondagogu (cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application, Carbohyd Polym 2010;82:670-679.
- 24. Quelemes PV, et al. Development and antibacterial activity of cashew gum-based silver nanoparticles. Int J Mol Sci 2013;14:4969-4981.
- 25. Venkatpurwar V and Pokharkar V. Green synthesis of silver nanoparticles using marine polysaccharide: Study of in-vitro antibacterial activity. Mater Lett 2011;65:999-1002.
- 26. Xia N, et al. Green synthesis of silver nanoparticles by chemical reduction with hyaluronan. Carbohyd Polym 2011;86:956-961.

DOI: 10.4172/2321-6212.1000222

- 27. Schrofel A, et al. Biosynthesis of gold nanoparticles using diatomssilica-gold and eps-gold bionanocomposite formation. J Nanoparticle Res 2011;13:3207-3216.
- 28. Govindaraju K, et al. Extra-cellular synthesis of silver nanoparticles by a marine alga, sargassum wightii grevilli and their antibacterial effects. J Nanosci Nanotechnol 2009;9:5497-5501.
- 29. Bhainsa KC and D'souza S. Extracellular biosynthesis of silver nanopar-ticles using the fungus aspergillus fumigatus, Colloid Surfaces B 2006;47:160-164.
- 30. Chen J, et al. Evidence of the production of silver nanoparticles via pretreatment of phoma sp. 3.2883 with silver nitrate. Lett Appl Microbiol 2003;37:105-108.
- 31. Fayaz M, et al. Blue orange light emission from biogenic synthesized silver nanoparticles using tri-choderma viride, Colloid and Surfaces B 2010;75:175-178.
- 32. Narayanan KB and Sakthivel N. Facile green synthesis of gold nanos-tructures by NADPH-dependent enzyme from the extract of sclerotium rolfsii, Colloids and Surfaces A 2011;380:156-161.
- 33. Soni N and Prakash S. Fungal-mediated nano silver: an effective adulticide against mosquito. Parasitol Res 2012;111:2091-2098.
- 34. Bharde A, et al. Extracellular biosynthesis of magnetite using fungi. Small 2006;2:135-141.
- 35. Dameron C, et al. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 1989;338:596.
- 36. Kumar D, et al. Biosynthesis of silver anoparticles from marine yeast and their antimicrobial activity against multidrug resistant pathogens. Pharmacologyonline 2011;3:1100-1111.
- 37. Krumov N, et al. Accumulation of cds nanoparticles by yeasts in a fed-batch bioprocess. J Biotechnol 2007;132:481-486.
- 38. Pimprikar P, et al. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast yarrowia lipolyticancim 3589. Colloid Surfaces B 2009;74:309-316.
- 39. Tian X, et al. Mesoporous zirconium phosphate from yeast biotemplate. J Colloid Interf Sci 2010;343:344-349.
- 40. Brock TD and Gustafson J. Ferric iron reduction by sulfur-and iron-oxidizing bacteria. Appl Environ Microbiol 1976;32:567-571.
- 41. Johnston CW, et al. Gold biomineralization by a metallophore from a gold-associated microbe. Nature Chem Biol 2013;9:241.
- 42. He S, et al. Biosynthesis of gold nanoparticles using the bacteria rhodopseudomonas capsulate. Mater Lett 2007;61:3984-3987.
- 43. Schluter M, et al. Synthesis of novel palladium nanocatalysts by microorganisms from heavy-metal-influenced high-alpine sites for dehalogenation of polychlorinated dioxins. Chemosphere 2014;117:462-470.
- 44. Ramanathan R, et al. Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale 2013;5:2300-2306.
- 45. Shukla D and Vankar PS. Synthesis of plant parts mediated gold nanoparticles. Int J Green Nanotechnol 2012;4:277-288.
- 46. Kumar V and Yadav SK. Synthesis of stable, polyshaped silver, and gold nanoparticles using leaf extract of lonicera japonica I. Int J Green Nanotechnol 2011;3:281-291.
- 47. Lee HJ, et al. Biological synthesis of copper nanoparticles using magnolia kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol 2013;88:1971- 1977.
- 48. Kasthuri J, et al. Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanoparticle Res 2009;11:1075-1085.
- 49. Park Y, et al. Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 2011;5:69-78.
- 50. Deplanche K, et al. Involvement of hydrogenases in the formation of highly catalytic pd (0) nanoparticles by bioreduction of pd (ii) using escherichia coli mutant strains. Microbiology 2010;156:2630-2640.
- 51. Narayanan KB and Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 2010;156:1-13.
- 52. Raveendran P, et al. Completely green synthesis and stabilization of metal nanoparticles, J Am Chem Soc 2003;125:13940-13941.
- 53. Laudenslager MJ, et al. Schauer, Carboxymethyl chi-tosan as a matrix material for platinum, gold, and silver nanoparticles. Biomacromolecules 2008;9:2682-2685.
- 54. Cai J, et al. Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 2008;10:87-94.

DOI: 10.4172/2321-6212.1000222

- 55. Lloyd JR, et al. Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 1998;64:4607-4609.
- 56. Ahmad A, et al. Extracellular biosynthesis of silver nanoparticles using the fungus fusarium oxysporum. Colloid Surfaces B 2003;28:313-318.
- 57. Ma Y, et al. One-step synthesis of amino-dextran-protected gold and silver nanoparticles and its application in biosensors. Anal Bioanal Chem 2005;382:1044-1048.
- 58. Saha S, et al. Photochemical green syn-thesis of calcium-alginate-stabilized ag and au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 2009;26:2885-2893.
- 59. Krishnaraj C, et al. Synthesis of silver nanoparticles using acalypha indica leaf extracts and its antibacterial activity against water borne pathogens, Colloid Surface B 2010;76:50-56.
- 60. Spadaro D and Gullino ML. Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Protect 2005;24:601-613.
- 61. Iravani S and Zolfaghari B. Green synthesis of silver nanoparticles using pinus eldarica bark extract. Biomed Res Int 2013.
- 62. Mallikarjuna K, et al. Green synthesis of silver nanoparticles using ocimum leaf extract and their characterization. Digest J Nanomater Biostruct 2011;6:181-186.
- 63. Song JY and BS Kim. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 2009;32:79.
- 64. Singh P, et al. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 2016;34:588-599.
- 65. Bruchez M, et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998;281:2013-2016.
- 66. Chan WC and Nie S. Quantum dot bioconjugates for ultrasensitive non-isotopic detection. Science 1998;281:2016-2018.
- 67. Wang S, et al. Anti-gen/antibody immunocomplex from cdte nanoparticle bioconjugates. Nano lett 2002;2:817-822.
- 68. Mah C, et al. Microsphere-mediated delivery of recombinant aav vectors in vitro and in vivo Mol Ther 2000;1:S239.
- 69. Pantarotto D, et al. Immunization with peptide-functionalized carbon nanotubes enhances virus-speci c neutralizing antibody responses. Chem Biol 2003;10:961-966.
- 70. Edelstein R, et al. The barc biosensor applied to the detection of biological warfare agents, Biosensors Bioelectronics 2000;14:805-813.
- 71. Nam JM, et al. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003;301:1884-1886.
- 72. Mahtab R, et al. Protein-sized quantum dot luminescence can distinguish between" straight"," bent", and" kinked" oligonucleotides. J Am Chem Soc 1995;117:9099-9100.
- 73. Ma J, et al. Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology 2003;14:619.
- 74. De La Isla A, et al. Nanohybrid scratch resistant coatings for teeth and bone viscoelasticity manifested in tribology. Mater Res Innov 2003;7:110-114.
- 75. Shinkai M, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes. J Magnet Magnet Mater 1999;194:176-184.
- 76. Molday RS and Mackenzie D. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J Immunol Method 1982;52:353-367.
- 77. Weissleder R, et al. Ultrasmall superparamagnetic iron oxide: characteriza-tion of a new class of contrast agents for MR imaging. Radiology 1990;175:489-493.
- 78. Parak WJ, et al. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 2002;14:882-885.
- 79. Khanna A. Nanotechnology in high performance paint coatings. Asian Exp Sci 2008;21:25-32.
- 80. Sawhney APS, et al. Modern applications of nanotechnology in textiles. Textile Res J 2008;78:731-739.
- 81. Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2004;2:3.
- 82. Mu L and Sprando RL. Application of nanotechnology in cosmetics. Pharm Res 2010;27:1746-1749.
- 83. He X and Hwang HM. Nanotechnology in food science: Functionality, applicability, and safety assessment. J Food Drug Anal 2016;24:671-681.
- 84. Bhushan B. Springer handbook of nanotechnology, Springer 2017.