
 ISSN (Online) : 2319 - 8753
 ISSN (Print) : 2347 - 6710

 International Journal of Innovative Research in Science, Engineering and Technology

 Volume 3, Special Issue 3, March 2014

 2014 International Conference on Innovations in Engineering and Technology (ICIET’14)

 On 21st & 22nd March Organized by

 K.L.N. College of Engineering, Madurai, Tamil Nadu, India

Copyright to IJIRSET www.ijirset.com 1294

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

A New Method for Protecting User Mode from

Root Kit Malwares
K.Rajan

1
, D.Raghu Raman

2

Department of Computer Science, Arunai Engineering College, Tiruvannamalai, Tamilnadu, India
1

Department of Computer Science, Arunai Engineering College, Tiruvannamalai, Tamilnadu, India
2

ABSTRACT- The dominant operating system in the world

today is windows. There are some of the weaknesses

present in the window architecture. Using this weakness

root kit malware wants to utilize an administrative control

of the windows, root kit malwares refers to software that is

used to conceal the presence and permit an attacker to take

control of a system. So, an attacker can capture the sensitive

information that present in a system. To reduce the number

of root kit injection first, we classify the legitimate and

suspicious code using an algorithm if the process is a

legitimate one means that the legitimate process is directly

permitted to get the system service through the ntdll.dll

which acts as a gateway to the kernel mode from the user

mode. If it is a suspicious code means, it will be processed

through the customized ntdll.dll. Monitor program is used to

customize the ntdll.dll by hook.dll, using which the pre-

validation and validation function is added in the ntdll.dll.

Pre-validation is done by generating password for a

suspicious code using a scrambling technique, then by using

we unscramble the dispatch-ID which was scrambled in the

user mode and redirect the control to the validation function

if it matches with any of the system services, otherwise the

control will be disallowed. It provides an additional

protection that avoids the system crash and allows only the

legitimate program to accomplish the system services.

KEYWORDS: root kit malware, hook, dispatched

I. INTRODUCTION

A root kit is stealth software which is designed to

hide the existence of certain processes or programs from

normal methods of detection and enable continued

privileged access to a computer. Root kit installation is

either automated, or an attacker can install this malware

once they've obtained root or Admin access. Obtaining this

access is a result of direct attack on a system. Once

installed, it becomes possible to hide the intrusion as well as

to maintain privileged access. The key is the root/Admin

access. Full control over a system means that existing

software can be changed, including software that might

otherwise be used to detect or circumvent it.

Root kit detection is much difficult because a root

kit may be able to subvert the software that is intended to

find it. Detection method using an alternative and trusted

http://en.wikipedia.org/wiki/Privileged_access
http://en.wikipedia.org/wiki/Hacker_%28computer_security%29

A New Method For Protecting User Mode From Root kit Malwares

Copyright to IJIRSET www.ijirset.com 1295

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

operating system, behavioral-based method, signature scan,

difference scanning, and memory dump analysis method.

Removal can be difficult or practically impossible,

particularly in cases where the root kit resides in the kernel;

reinstallation of the operating system may be the only

available solution to this problem. When dealing with

firmware root kit, removal may require hardware

replacement, or specialized equipment or a tool.

In computer programming, the hooking covers a range of

techniques used to alter or augment the behavior of an

operating system, of application, or of other software parts

by intercepting function calls or messages or events passed

between software components. Code handles such

intercepted function calls, events or messages is called a

"hook".

Hooking technique is used for lot of purposes,

including debugging and extending functionalities. Example

include intercepting keyboard or mouse event messages

before they reach an application, or intercept theoperating

system calls in order to monitor behavior or modify the

function of an application or other component. Hooking can

also be used by malicious code or by malwares. For

example, root kits, pieces of software that try to make

themselves invisible by faking the output of API calls that

would otherwise reveal their presence, often use hooking

technique.

API hooking based method can be divided into

two kind: user-mode APIs hooking and another is kernel-

mode APIs hooking. User-mode APIs hooking method

forbid injected code calling user- mode APIs. While these

APIs are called, the corresponding mechanism will be

watched. The API call will be then reviewed and justified.

Even though, if injected code doesn’t call any user-mode

APIs, this method can’t stop illegal system requests. Kernel-

mode APIs hooking method solve this loophole at some

point of system services request happen in kernel mode,

the corresponding mechanism will inspect the requests and

decide whether to allow the requests.

II. BACKGROUND AND RELATED WORK

A virtual machine (VM) can be simply created

upon use and disposed upon the completion of the tasks or

the detection of error. The demerits of this approach is that

if there is no malicious activity that the user has to redo all

of the work in her actual workspace since there is no easy

way to commit (i.e., merge) only the benign updates within

the VM back to the host environment. A practical

application is to allow user to install and try new application

without worrying about malware. In other words, if

abnormal happens, one can easily throw away the infected

VM. One disadvantage of this approach is that if all

processes run normally within a VM and there is no

malicious activity, a user has to redo all the work in actual

workspace since, there is no secure commitment mechanism

to save the benign changes within the VM back to the host

environment

Zhiyong Shan et al.[1] designed secom which have

five approach to overcome the above problem, it propose

the first secure commitment approach, Secom, for

Operating Systen-level VM to identify compromised OS

objects and selectively merge only legitimate changes into

the host. Moreover, it three novel features allows it to

complete the task in a lightweight but efficient manner.

It proposes a novel clustering approach to

segregate benign and malicious changes within a VM. The

approach relies on starting and tracing rules to trace OS-

level flows to collect modifications, and the labeling

method to group collected changes into cluster.It gives a

new behavior-based malware detection approach. A

suspicious clusters are considered to be malicious only

when it exhibit atleast two types of malware behaviors.

Moreover, as all cluster in Secom are derived from

hazardious sources, our proposed detection procedure

implicitly takes into an account that the source of all

processes that launch the behaviors. This experiment

showed that the number of false positives (FPs) of this

method is much smaller than that of existing online

malware detection approaches. We have implemented a

prototype of Secom on a feather-weight virtual machine

(FVM) on Windows. Experiment show that it can

effectively filter out a number of real-world malwares while

imposing only a small overhead on the FVM. Moreover, it

filters malware objects more thoroughly than that of

commercial antivirus software.

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Behavioral#Computer_science
http://en.wikipedia.org/wiki/Core_dump
http://en.wikipedia.org/wiki/Kernel_%28computing%29
http://en.wikipedia.org/wiki/Firmware
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Message_passing
http://en.wikipedia.org/wiki/Event_%28computing%29
http://en.wikipedia.org/wiki/Module
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Rootkit
http://en.wikipedia.org/wiki/API

A New Method For Protecting User Mode From Root kit Malwares

Copyright to IJIRSET www.ijirset.com 1296

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

To increase the survivability and concealment of

malware, malware writers have developed various

approaches to fight against distinct security solutions.

Malware that terminates the execution of antivirus software

without the consciousness of the antivirus software users is

called an antivirus terminator. Without the protection of

terminated security tools, an attacker can do anything on the

intruded host. Antivirus terminator used seven method such

as Process termination method, Null debugger method, Dll

unloading method, Close message method, Mouse simulator

method, Registry modification method and Thread

termination method. Hence, developing a solution to protect

antivirus software against antivirus terminators becomes a

critical issue.

Fu-Hau Hsu et al.[2] implemented a approach

called ANtivirus Software Shield (ANSS), to protect

antivirus software against antivirus terminators. ANSS uses

SSDT hooking to intercept specific Windows APIs and

analyzes their parameters to filter out hazardous API calls

that will terminate antivirus. ANSS intercepts frangible API

call before their execution so that ANSS can monitor

frangible API call. When a program issues a system call to

execute a system service, kiSystemService look up on the

SSDT to find the address of the corresponding system

service. Then kiSystemService uses the address to invoke

the system service. Through SSDT hooking, ANSS

modifies some function addresses stored in the

KiServiceTable service descriptor table and replaces them

with ANSS API handlers. After an ANSS API complete its

task, it invokes the original API.

Interceptor: It intercepts the execution flow of the program

and transfers the execution flow to the filter before the code

of a frangible API is executed.

Filter: An invocation to a frangible API is transferred to its

corresponding ANSS API first through SSDT hooking.

Each ANSS API enforces the rule applying to its related

frangible API.

Drive-by-Download attacks are one of the most

severe security threats to computer and network system. A

user using a vulnerable browser or browser plug-in may

become a victim of a drive-by-download attack, thus an

attacker can download and execute any code on the victim’s

host. A drive-by-download attack is launched through a web

page with crafted malicious contents. The web server that

host the web page may be owned by an attacker or may be

compromised by an attacker or may be a normal benign host

which allows other persons to put their contents, such as an

advertisements, in the web page of the host. To accomplish

drive-by-download attack, Malware Bootstrap Function

(MBF) must be injected into the address space of the

attacked browser. Then the execution flow must be

transferred to the MBF through some vulnerability in the

browser or a plug-in in the browser. In turn, the MBF will

download malwares into the compromised host and execute

the malware.

Chang-Kuo Tso et al.[6] proposed a scheme called

Browser Guard a runtime, behavior based solution to drive

by download attack. Browser Guard analyzes the download

scenario of every downloaded object. Based on the

download scenarios, Browser Guard blocks executions of

any executable file that is downloaded to the host machine

without the consent of a user.

Browser Guard consists of a Browser Guard-BHO

in every IE process, a Browser Guard-Kernel in the kernel

space, and a list server process. The list server process

contains two lists, a white-list and a blacklist. The white-list

records the URLs of benign files and the hash vales of

benign executable files. The blacklist records the hash

values of detected malicious files.

III. SYSTEM DESIGN

A. ALGORITHM:

An algorithm used to classify the legitimate and

suspicious code

Take active processes as a input. if the process is a

legitimate one means that the legitimate process is directly

permitted to get the system service through the ntdll.dll

A New Method For Protecting User Mode From Root kit Malwares

Copyright to IJIRSET www.ijirset.com 1297

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

which acts as a gateway to the kernel mode from the user

mode. This classification used for a legitimate user get the

service from kernel mode directly through the ntdll.dll in

the user mode. If it is a suspicious code means, it will be

processed through the customized ntdll.dll

SYSTEM ARCHITECTURE

 Fig 1

B. MONITOR:

 After the process is loaded and initialized, the

monitor suddenly suspends the main thread of the protected

process. The monitor includes the PID of the process into

the monitor’s list. Monitor program is used to customize the

ntdll.dll by hook.dll, using which the pre-validation and

validation function is added in the ntdll.dll. We replace the

sysenter commands by the commands jmp pre-validation.

The prevalidation function in the system has three missions

they are caching registers, preparing the password and

saving stack pointer. Pre-validation is done by generating

password for a suspicious code using a scrambling

technique; the dispatch id of a native API function is

scrambled at this pre-validation function. The scrambled

dispatch id and forwarded to the kernel mode.

(When a kernel mode receives the request from the

process, the driver will authenticate the process with the

help of validation function present in the user mode to

protect the malicious code that directly attack the kernel

mode.)

C. DRIVER:

Before handling a request, the driver has to determine if the

request has comes from legitimate code or from

suspicious code. If the request comes from legitimate code

(i.e from ntdll.dll), it will get the system service directly. If

the request comes from suspicious code (i.e from

customized ntdll.dll), then the driver has to determine if

the request has been authenticated by the validation function

yet.

If this request has not been authenticated. the

driver records the dispatch ID, its process ID, and thread ID.

Then unscramble the dispatch-ID which was scrambled in

the user mode. Redirect the control to the validation

function if it matches with any of the system services by

changing the return address to where validation function

located. This can be done by modifying values of a fixed

position in the stack of the kernel mode, from that original

value esp to the new value R.When the driver carries out a

ret instruction, it exit the kernel mode and restores eip to the

address of the validation function. The function then return

to the user mode and executes the validation function.

Notice that esp will be pointed to an empty address R _ 1.If

the process has been authenticated by the validation

function already. The driver is able to retrieve this record by

matching the service number, the process ID, and the thread

ID. In this case, these records are removed and the API

request is served.

A New Method For Protecting User Mode From Root kit Malwares

Copyright to IJIRSET www.ijirset.com 1298

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

D. VALIDATION FUNCTION:

Pop out the scrambled dispatch-ID in pre-validation

functions and unscrambles it to compare with the

unscrambled dispatch-ID comes from driver. If matches,

then it is legitimate and get the system service,

otherwise the request may come from malicious. So it will

be suspended.

V. CONCLUSION

This method uses an algorithm to classify the

legitimate and suspicious process then it allows the

legitimate process directly to gain the system service from

the kernel mode and the suspicious code allowed getting the

service through customized ntdll.dll. That the customized

dll used to scramble the dispatch id. In this paper, we

proposed an algorithm and a method which create a

password using prevalidation function which protects the

user mode functions through which the kernel mode service

are provided. We believe this method is a better method

than the other existing methods in protecting API functions

of the windows. These methods effectively prevent the

native API to give the system service to the unauthorized

user. Thus in the kernel mode it effectively prevent

malicious code to access the native APIs. This method does

not provide the solution if the malicious code affects the

user mode in the operating system. Thus the malicious code

can access the lower level kernel API by using hooking

techniques. we proposed a scheme in kernel mode to protect

Windows system against malicious code. This scheme

prevents malicious code from directly accessing kernel

APIs. We believe this scheme is currently the best real-time

solution for Windows system in this layer.

REFERENCES

[1] Zhiyong Shan, Xin Wang, Tzi-cker Chiueh, "Malware Clearance for
Secure Commitment of OS-Level Virtual Machines," IEEE

Transactions on Dependable and Secure Computing, vol. 10, no. 2,

pp. 70-83, March-April 2013.
[2] Fu-Hau Hsu, Min-Hao Wu, Chang-Kuo Tso, and Chieh-Wen Chen.

“Antivirus Software Shield Against Antivirus Terminators”, IEEE

transaction on information forensics and security, vol. 7, n0. 5,

October 2012
[3] Jinku Li, Zhi Wang, Tyler Bletsch, Deepa Srinivasan, Michael Grace,

and Xuxian Jiang. “Comprehensive and Efficient Protection Of

Kernel Control Data” IEEE transactions on information forensics and
security, vol. 6, pp.1404-1417, december 2011

[4] Trent Jaeger, Paul C. van Oorschot, Glenn Wurster. “Countering

unauthorized code execution on commodity kernels: A survey of
common interfaces allowing kernel code modification” ELSEVIER

Articles on Computers and Security Volume 30, Pages 571–579,

Issue 8, November 2011
[5] Arati Baliga, Vinod Ganapathy, and Liviu Iftode.” Detecting kernel-

Level Rootkits Using Data Structure Invariants” IEEE transactions

on dependable and secure computing, vol. 8, pp. 670-684,
september/october 2011

[6] Fu-Hau Hsu, Chang-Kuo Tso, Yi-Chun Yeh, Wei-Jen Wang, and Li-

Han Chen. “BrowserGuard: A Behavior-Based Solution to Drive-by-
Download Attacks” IEEE journal on selected areas in

communications, vol. 29, pp.1461-1468, august 2011

[7] Hung-Min sun, Hsun Wang, King-Hang Wang and Chien. “A Native
APIs Protection Mechanism in the Kernel Mode against Malicious

Code”, IEEE transaction on computers, vol. 60, no. 6, June 2011

[8] Desmond Lobo, Paul Watters, Xin-Wen and Wu and Li Sun,
“Windows Rootkits: Attacks and Countermeasures” IEEE

Proceedings. Second Cybercrime and Trustworthy Computing

Workshop (CTC 2010), july 2010
[9] L. Nguyen, T. Demir, J. Rowe, F. Hsu, and K. Levitt, "A Framework

for Diversifying Windows Native APIs to Tolerate Code Injection

Attacks," Proc. Second ACM Symp. Information, Computer and
Comm. Security (ASIACCS '07), pp. 392-394, 2007.

[10] LI Xianghe, ZHANG Liancheng, LI Shuo “Kernel Rootkits

Implement and Detection” Wuhan University Journal of Natural
Sciences Vol. 11, pp.1473-04, 2006

[11] Mohan Rajagopalan, Matti A. Hiltunen, Trevor Jim, and Richard D.

Schlichting. “System Call Monitoring Using Authenticated System
Calls.” IEEE transactions on dependable and secure computing, vol.

3, pp.216-229, july-september 2006.
[12] John G Levine, Julian B.Grizzard and Henry L.Owen, “Detecting

and Categorizing Kernel-Level Rootkits to Aid Future Detection”

IEEE Security & Privacy, february 2006

http://www.sciencedirect.com/science/journal/01674048/30/8
http://www.sciencedirect.com/science/journal/01674048/30/8

