
 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Special Issue 1, December 2013

Copyright to IJAREEIE www.ijareeie.com 568

A Novel IEEE 754 Standard Floating Point

Unit Comprising Fused Add-Subtract Unit
Rosemin C.J.

1
, Anuja George

2
, Arundev V

3

Department of Electronics and Communication, St. Joseph’s College of Engineering and Technology, Palai,
India

1,2

Flight Computer Division, FCG/AVN/VSSC, Kerala, India
3

Abstract: In this paper, a high speed and reduced area floating point unit(FPU) is implemented incorporating fused add-

subtract unit. The FPU is designed to handle numbers both in single precision and double precision formats. When

compared to discrete add-subtract unit, fused add-subtract unit has achieved 33% reduction in area and 52% reduction

in delay in case of single precision format. In double precision format compared to discrete add-subtract unit, fused

add-subtract unit has achieved a reduction in area and delay by 41% and 40% respectively. The FPU was designed

using VHDL language and implemented on a Xilinx Virtex-II FPGA.

Keywords: Discrete FPU, Fused FPU, VHDL

 I INTRODUCTION

The computer arithmetic units in a modern microprocessor execute advanced applications such as 3D graphics,

multimedia, signal processing and various scientific computations that require complex mathematics. Real

numbers are mainly divided into fixed point and floating point numbers. Programming languages supports numbers

with fractions which is called as floating point numbers. Compared to fixed point numbers, floating point numbers can

represent wide range of values. Range of values varies from very tiny numbers to very large numbers. To retain the

resolution and accuracy many of the researchers go for floating point numbers.

Precision plays an important role in the floating point numbers. We are dealing with both single precision and

double precision floating point numbers in this paper. A floating point number is usually represented as, significant *

base
exponent

 . Base

is implicit and need not be stored because it is same for all numbers. To make arithmetic operations simple on floating

point numbers, it is typically required that they be normalized. A normalized number is one in which the most

significant digit of

the significand is nonzero [4].

The floating point representation is defined in IEEE standard 754, adopted in 1985. Floating point numbers have

three fields such as sign, exponent and mantissa [1]. The bits that corresponds to these fields depends on the precision.

In single precision there will be 32 bits and in double precision 64 bits. The arrangement of both formats is given in

fig.1.

Figure 1 (a) Single precision format

Figure 1 (b) Double precision format

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Special Issue 1, December 2013

Copyright to IJAREEIE www.ijareeie.com 569

In the formats shown in the fig.1, S represents the sign of the number. The value 1 for S indicates that number

is negative and 0 indicates number is positive. E denotes the exponent and M is the mantissa. Mantissa is otherwise

called as significand. IEEE 754 uses biased representation for the exponent. That means Val(E)=E-Bias(Bias is a

constant). This is chosen to make the biased exponent’s range nonnegative [1].

IEEE 754 standard defines three special numbers- signed zeros, signed infinities and NaNs. These three are

considered in the design of this paper.Also our design detects all five IEEE floating point exceptions – invalid

operation, underflow, overflow,

inexact and divide by zero [1]. Floating point addition and subtraction are more complex arithmetic operations

compared to multiplication and division. If the addition and subtraction is combined to a single unit, it will lead to

better performance of the floating point unit. Many designs were proposed for the designs of fused floating point add-

subtract unit.

The paper is arranged as follows: Section II deals with floating point addition algorithm proposed in this paper and

principles used in the fused floating point add-subtract unit. Other arithmetic operations such as multiplication,

division, squaring and inversion are described in Section III. In Section IV, the synthesized results of the experiments

carried out are given. And section V concludes the paper.

II. PROPOSED FUSED FLOATING POINT ADD-SUBTRACT UNIT

A. Floating point addition algorithm

Floating point addition and subtraction are the main arithmetic operations dealt with this paper. In both

operations it is necessary to ensure that both operands have same exponent value. The flow chart for the floating point

adder used in this paper is given in the figure 2. Steps in the proposed algorithm for floating point addition are given

below.

Step 1: Unpack the inputs into three fields such as sign, exponent and mantissa.

Step 2: In the first stage exceptions at the input side is found out. If any of the input is NaN(Not a number), then output

is taken as null. If both the inputs are zero or infinity, then output is taken as zero or infinity respectively.

Step 3: The exponent difference between two inputs is found out. If there is no exponent difference, then the

significands of both inputs are added together. Otherwise the mantissa of smaller exponent is padded with zeros at the

right according to exponent difference. And the smaller exponent made equal to larger exponent.

Step 4: Significands of both inputs are added together after logical right shifting of significand of smaller exponent.

Step 5: If there is significand overflow, pad zero at the right of the significand and add ‘1’ to the exponent.
Step 6: If there is exponent overflow then detect overflow.

Step 7: Check for exceptions at the output side also.

Floating point subtraction has similar steps as that of addition, and difference comes in the step 4. Here instead

of addition of significands, subtraction of significands is done. So if we are doing addition and subtraction in separate

blocks, it will lead to excessive area and power consumption. Many works proposed fused floating point add-subtract

unit that produces addition and subtraction simultaneously [2],[3],[5]. This paper presents a fused floating point which

produces addition or subtraction at a time.

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Special Issue 1, December 2013

Copyright to IJAREEIE www.ijareeie.com 570

Figure 2 Flowchart for the floating point addition algorithm

B. Principles used in fused FPU

Sign of two operands decides the operation to be performed is whether addition or subtraction. In the case of

floating point addition, if two operands have same sign then addition is to be done otherwise subtraction is to be

performed. In floating point subtraction, if two operands have same sign then subtraction should be done otherwise

addition should be performed. The above logic indicates that with proper sign logic we can combine both addition and

subtraction. Jongwook Sohn proposed a sign decision table which shows the signs of two operands and comparison of

the exponents and significands [2].

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Special Issue 1, December 2013

Copyright to IJAREEIE www.ijareeie.com 571

Table 1. Sign Decision Table [2]

According to the above sign decision table, the new fused floating point add-subtract unit is proposed in this paper.

III. OTHER FLOATING POINT ARITHMETIC

Floating point arithmetic is widely used in many scientific and signal processing applications. Implementing

arithmetic operations for floating point numbers in hardware is challenging. Multiplication, division, squaring and

inversion are the other floating point arithmetic described in this paper.

A. Floating point multiplication

With unsigned multiplication there is no need to take the sign of the number into consideration. However in signed

multiplication the same process cannot be applied because the signed number is in 2’s compliment form which yields
an incorrect result if multiplied in a similar fashion to unsigned multiplication. That’s where Booth’s algorithm comes
in. Booth’s algorithm preserves the sign of the result. There are mainly two rules: append a zero to the right of the LSB
of the multiplier number and inspect groups of two adjacent bits of multiplier, starting with the LSB and the appended

zero. If the pair is 00 or 11, then shift the partial product one bit to the right. If the pair is 01, then add the multiplicand

to the partial product and shift the new partial product one place to the right. If the pair is 10, then subtract from the

partial product and shift the new partial product one place to the right.

 B. Floating point division

Among the operations (add, subtract, multiply, divide), division is generally the most difficult to implement in

hardware. The proposed divider receives two floating point numbers. First these numbers are unpacked by separating

the numbers into sign, exponent and mantissa bits. The sign logic is a simple XOR. The exponents of the two numbers

are subtracted and then added with a bias number i.e.,1023. Mantissa division block performs division using digit

recurrence algorithm. It takes more than 55 clock cycles. After this the output of mantissa division is normalized. After

normalization, rounding is done, also exceptions are checked.

IV. PROPOSED WORK

The top module designed is termed as FPU. It consists of five sub modules producing six arithmetic operations.

The input op_code is three bits and selects the arithmetic operation to be performed. Opa and opb are the operands that

are given to the module.

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Special Issue 1, December 2013

Copyright to IJAREEIE www.ijareeie.com 572

Figure 3 Block diagram of proposed system

V. RESULTS AND DISCUSSIONS

After simulating both discrete and fused floating point add-subtract units, the design is synthesized using

Xilinx ISE 13.2. A comparison between discrete floating point add-subtract unit and fused floating point add-subtract

unit is done. It is found that both resource utilization and delay is optimized in latter. So fused add-subtract unit is used

in the design of our floating point unit resulting in a low power reduced area design.

A. Comparison between discrete & fused floating point add-subtract unit

Single precision floating point unit is considered first. Percentage of slices and LUTs used in discrete floating point

add-subtract unit is found to be 287% and 272% respectively. In fused floating point add-subtract unit, percentage of

slices and LUTs is found to be 194% and 183% respectively. Percentage of LUTs in both is same and that is 81%. Thus

it is evident that resource utilization is reduced by 33% in fused floating point add-subtract unit and it leads to a low

area design. This is helpful in many critical applications.

Considering the case of double precision floating point unit, percentage of slices and LUTs used in discrete floating

point add-subtract unit is found to be 1001% and 950% respectively. In fused floating point add-subtract unit,

percentage of slices and LUTs is found to be 591% and 555% respectively. Percentage of LUTs are same and given by

158%. Resource utilization is reduced by 52% by using fused floating point add-subtract unit and represented in the

figure 5.

Better performance of fused floating point add-subtract unit is evident from the delay occurred in both. In fused

floating point add-subtract unit delay is only 119sec. but in discrete it is 240sec. The difference is plotted in the graph.

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Special Issue 1, December 2013

Copyright to IJAREEIE www.ijareeie.com 573

Table 2: Synthesis results of both discrete and fused floating point add-subtract units

 Figure 5: Resource utilization comparison between discrete and fused floating point add-subtract unit

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Special Issue 1, December 2013

Copyright to IJAREEIE www.ijareeie.com 574

Table 3: Delay analysis of discrete and fused floating point add-subtract units

Figure 6: Delay comparison between discrete and fused floating point add-subtract units.

 B. Evaluation of single precision and double precision floating point units

The design is developed in VHDL language and simulated using ModelSim SE PLUS 6.3f. For the

implementations of this circuit we have used Xilinx FPGA (XC2V4000 device of virtex2). The top level source is

Hardware Description Language type, with a XST (VHDL/VERILOG) environment.

Fig 9 Design summary of modified CSLA incorporated FFT

Figure 7: Simulated waveform of single precision floating point unit

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Special Issue 1, December 2013

Copyright to IJAREEIE www.ijareeie.com 575

Figure 8: Simulated waveform of double precision floating point unit

VI. CONCLUSION

The single precision and double precision floating point units are implemented successfully using fused

floating point add-subtract unit. The results obtained using the fused floating point add-subtract unit shows that

resource utilization and delay is reduced by 33% and 52% respectively in single precision format and in double

precision format area and delay are reduced by 41% and 40%. When compared to discrete floating point add-subtract

unit, fused floating point add-subtract unit shows better performance.

REFERENCES

[1]. IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE Standard 754-2008, New York: IEEE, Inc., Aug. 29, 2008.

[2]. Jongwook Sohn and Earl E. Swartzlander," Improved Architectures for a Fused Floating-Point Add-Subtract Unit", IEEE transactions on Circuits

and Systems, vol.59, pp. 2285-2291, January 2012.

[3]. H. H. Saleh and E. E. Swartzlander, Jr., “A floating-point fused add–subtract unit,” in Proc. 51st IEEE Midwest Symp. Circuits Syst., 2008, pp.
519–522.

[4]. William Stallings, “Computer Organization and Architecture”, 8th edition Pearson, 2010, pages.345-361, ISBN 978-81-317-3245-8

[5]. E. E. Swartzlander, Jr. and H. H. Saleh, “FFT implementation with fused floating-point operations,” IEEE Trans. Comput., vol. 61, no. 2, pp.
284–288, Feb. 2012

