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I. INTRODUCTION AND PRELIMINARIES

Banach contraction principle plays a very important role in nonlinear analysis and has many
generalizations.Recently Suzuki [ 31 ] proved generalized versions of both Banach’s and Edelstein’s basic results
and thus initiated a lot of work in this direction, for example refer [3,4,5,8,13,18-21,24-28,31,32] and the
references in them .

In 2006, Bhaskar and Lakshmikantham [29]introduced the notion of a coupled fixed point in
partially ordered metric spaces,also discussed some problems of the uniqueness of a coupled fixed point and
applied their results to the problems of the existence and uniqueness of a solution for the periodic boundary
value problems. Later several authors obtained coupled fixed point theorems in various spaces,for example
refer [1,2,6,7,9-12,14-17,22,23,29,30,33-36] and the references in them.

The aim of this paper is to combine the ideas of coupled fixed points and Suzuki type fixed point
theorems to obtain a unique common coupled fixed point theorem for Jungck type mappings in a metric
space.

First we give the following theorem of Suzuki [31].
Theorem 1.1. Let (X, d) be a complete metric space and let 7 be a mapping on X, define a non-increasing

1 if os«@

function @ from [0,1) into (L ,1]by 6(r) = 1r;2r if ﬁz—] < r<%
ot 7}5 <r<l
assume that r [0, 1) , such that 8(r) d(x,Tx) <d(x,y) implies d(Tx,Ty) <rd(x,y) for all x,y € X, then there

exists a unique fixed point z of 7. Moreover, lim 7"x= z forallxe X.
n— oo

Now we give some known definitions which are used to prove our main result.

Definition 1.2 (See [29]) Let X be a nonempty set. An element (x,y)e X xX is called a coupled fixed
point of the mapping F:XxX— X if x=F(x,y)and y=F(y,x).
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Definition 1.3 (See [17]) Let X be a nonempty set. An element (x,y)e X xX is called

@) a coupled coincidence point of F:XxX—>X and f:X—>X if
fx:F(x,y) and fy = F(y,x).
(ii) a common coupled fixed point of F:XxX—>X and f:X—>X if x=fx=F(x,y)

and y=fy=F(y,x).

Definition 1.4 (See [17]) Let X be a nonempty set and F : X xX—>X and f:X— X. The pair (F,f)
is said to be W-weakly compatible if f (F (x, y)) = F(fx, fvy) whenever
JSx = F(x,y) and fy = F(y,x) for some(x,y)e X xX .

Now we prove our main result.

II. MAIN RESULT

Theorem 2.1. Let (X, d) be a metric space and F : XxX—>X and f:X—> X be mappings satisfying the
following :
(2.1.1) If there exists a constant € €[0,1) such that

n(O)d(fx, F(x,y) < max {d(f x, fu),d(fy,v).d(fe.F(x,y).d(fy.F(y.x))} implies
d(f. fu).d(fy, o). d (fx, F(x,y), d(f. F (y,x), }
d( fu, F(u,v),d(fo, F(v,u),d(fu, F (x,y),d(fv,F(y,x)
1
1+60

d (F(x, y), F(u,v)) <0 max{

for all x,y,u,veX , where 77:[0,1) >[4 ,1) defined by 77((9): is a strictly

decreasing function,
(2.1.2) F(XxX)c f(X)and f(X) iscomplete,
(2.1.3) F and f are W-compatible.

Then F and f have a unique common coupled fixed point.

Proof. Let x,,y,€X. Then from (2.1.2) there exist sequences {xn} and {yn} in X such that
Jx,q = F(xn,yn) and fy,,, = F(yn,xn) foralln =0,1,2,3--
Case(i): Assume that fx, # fx , or fy, # fy,,, foralln. (D

Since

n(O)d(fxy, F(xq, vy ) =n(0)d( fxy, fx;) < d(fxy, fx;)

< max{d(fxy, fx;), d( [y, ) d(fxy, F (X, Y9 N> d(fyg: F ¥y XN}
by (2.1.1), we have

d(fxl’ fxz) = d(F(x(), y())sF(xl’yl))
o {d(fxo,fx1>,d(ﬁo,m,d(fxo,fxl),d(m ,fyn,}
d(fxp fxz)’d(ﬁﬁ ’ﬁlz)’d(fxl’fxl)’d(fyl ’fyl)
< 0 max{d(fry, f5),d(fg> ) d(fs 1), d(fyy 5 fr))

2

Since
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nO)d(fyy, F(yy. X% ) =n()d(fyy. fy)) <d(fyy. [3))
< max{d(fxy, ), d(fyg, ), d(fxy, F(xy, v ). d(fyg, F(yy, %)},
by (2.1.1), we have
d(fyl’fyg):d(F(yO’xo)»F(yl»xl))

s {d(fyo,fyl),d(fxo,fxl),d(fyo,fyl),d(fxo,fxl),}
d(fyl’]cyz)’d(fx] ’fxz)’d(fy[sfyl)sd(fxl’fx])
< 0 max{d( fry. £1).d(fgs ) d(f,. ) Ay )

Now from (2) and (3), we have
max{d(fx. £,),d(fy,, fr, )} <0 max {d( o, fx,).d(fgs Sn s d(fxy, f2)ed(fy, fry )} —mmememmer @

If max{d(fx()’fxl), d(fyo’ fyl)} Smax{d(fxl,fxz),d(ﬁl,ﬁf2)} then from (4), we have fxl = fxz and fyl = fyz It
is a contradiction to (1).

Hence from (4), we have max{d(fx,, fx,),d(fy,, fy, )} <6 max {a'(f)co,fxl),d(fyo,fy1 )} .
Continuing in this way, we get

max{d(fx,, fx,,; ), d(fy,, [y, < 0 max{d(fx,_, fx,),d(fy, 1, fy,)}
< 92 max{d(fxnfz 9fxn71)’d(fy,172,]3’n71)}

3

< 0" max{d(fxy, fx,),d(fyy, )}
Thus d(fx,, fx,. )< o" max{d(fxy, fx,),d(fyy, 1)} and
d(fy,s s ) S 0" max{d(fxy, fx)),d(fyy, f¥1)}

For m > n, consider
d(fxm’fxn)S d(fxn’fan )+d(fxn+l ’fxn+2)+"’+d(fxm—1 ’fxm)
<@ +60"" 4.+ 0" ymax{d(fxy, £5,),d(frgs )}
< Lmax{d(fxg. ). d(fyo. 1)}

—0 as n— o, m— o
Hence {fx; }is a Cauchy sequence in /(X ) . Similarly we can show that {fy;;} is a Cauchy sequence in f(X) .

Since f(X) is complete, there exist p,q,z,,z, € X such that fx, > p=jfz and fy —>g=fz, -
Since fx, — p and fy, — g , we may assume that fx = p and fy #¢g for infinitely many n.

Claim: max {d(fz, F(x,)),d(fz5, F(y,x))} <0 max {d(fz,, ), d( [z, [¥),d(fx, F(x, y)),d(fy,F (y, %))}
forall x,y e X with fx# fz, and fy # fz,.

Let x,ye X with fx# fz; and fy # fz,.

Then there exists a positive integer n, such that for n >n, we have d(fz, fx,) < %d( Sz, fx) and

d(fzy, fy,) < ld(fzzvfy)-

Now for n >n,,
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n(@d(fx,,F(x,,y,)) <d(fx,,F(x,,y,))
= d(fxn9fxn+l)
< d(fxn’le )+d(fZ1’fxn+1 )

1 1
< Ed(fx, fZl) +§d(le’fx)

1
:d(fx,le)—gd(fx,le)

<d(fzy , f0)—d(fx,, fz)

<d(fx, fx,)

<max{ d(fc, SO, d(fs S d(fys F (s e d(fs F (30 )]
From (2.1.1), we have

d(F 03,0, F (6 ) < 0 max {d(fxn,fX),d(fymfy),d(fxn,fx,,ﬂ )s d(Fs Fpat s }
d(fva(x’ y))’d(fy?F(y’-x))’d(f-x7fxn+1)’d(ﬁ/7f.‘yn+l)

Letting n — o, we get
d(fzy, F(x,y)< 0 max{d(fz, f%),d(fzy, ), d(fx, F(x, y)),d(fy, F(y,x))}.
Similarly we can show that

d(fZ2, F()’» x))S 9 maX{d(sz, .fy)9d(le’ fx)s d(.ﬁ» F(xs )’)), d(.fys F(ys x))}
Thus
d(fzy, f0,d(fz,, fy)
max{d(fz;, F(x,y)),d(fz,, F(y,x))} < 6 max {d(fx, Fxy).d (. Fl. x))}
Hence the claim. Now consider
d(fx, F(x,y)) <d(fx, fz; )+d(fz . F(x,y))
<d(fx, fz ) +0 max {d(fz, f0),d(fzy, [).d(fx, F(x, y),d(fy,F(y,x))} from (5)
<(1+0)max {d(fz,, f),d(fzy, /1), d(fr, F(x, y)),d(fy, F(y, %))}
Thus
n(0)d(fx, F(x,y)) < max{d(fx, fz)),d(fy, fz,),d(fx, F(x, y),d(fy, F(y,x))}.
Hence from (2.1.1), we have
d (F(x, V), F(z,2, )) < 0 max {d(fx, Fa . d(y. foo ). AU F D). v, F(3.20), } -—---(6)
d(fz1, F(21,25)),d(J25, F (25, 2)),d (fz1, F (X, ¥)),d (fZ5, F (y, %))
Now
d(lesF(le Zz)) = igl;lod(fan,F(zl’ Zz))
= hj)n d(F(xn» yn)’ F(Zl’ Zz))

d(fx7le )’d(ﬁ’fZZ)’d(fva(x’y))’d(f )’aF(y’x)),
d(fz,F(2),2,)),d (25, F (25, 2)),d(fz1, F (%, ), d(fz5, F (y, X))
=0 max{d(fz,,F (2,2, )),d(fz;, F(25,2))}.

Similarly,
<1lim @ max{

n—»

}, from (6)

we can have
d(fzy, F(23,2)) < 0 max{d(fz; , F(z1,2,)),d(fzy s F (25,7}
Thus max{d(fz, ,F(z,2,)),d(fz, ,F(2y,2)} <O max{d(fz ,F(z,2,)),d(fz, ,F(25,7%))}
sothat fz;=F(z,z,) and fz,=F(z,,z) -
Thus (z;,z,) isa coupled coincidence point of F and f. Since the pair (F, f) is W-compatible, we have
Copyright to IJIRSET www.ijirset.com 5190
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fo=12=f(F (z.2) = F(fz. fz, ) = F(p,q) @)
fa=f*2=f(F (20,2) = F(fz2, & ) = F(q, p) 8)

Now

n(@d(fp, F(p,q) =0<max{d(fz, , fp).d(fz, f@).d(fp, F(p,q),d(fq. F(q, p))}.

Hence from (2.1.1) we have
d(fp, fz) =d(F(p,q), F(z,2,))
< 0 max {d(fp,le ).d(fq, f2,).d(fp, F(p.q)).d(fq.F(q. p)). }
d(fz1,F (2,25 )),d(f25, F (25,2 )),d(fz ,F(p,q)),d(fz,,F(q, p))
=0 max{d(fp. fz,).d(fq, fz,)}.

Similarly, we have
d(fq, fzp ) <0 max{d(fp, fz;).d(fq. fz3)}-
Thus

max{d(fp, fz)),d(fq, fz,)} < 0 max{d(fp, fz).d(fq, [z)}
Hence p=fz=/p and q=jfz,= fq.
Now from (7) and (8), we have (p, g) is a common coupled fixed point of f and F.
Suppose (p',q") 1is another common coupled fixed point of F and f. Now consider

n(0)d(p,F(p.q))=0<max{d(f p. fr).d(fq, fa").d(f p.F(p,q)).d(fq.F(q,p))} .
By (2.1.1), we have

d(p.p")=d(F(p,q).F(p'.q") <0 max{d(p, p'),d(q.q")}.
Similarly, we can show that  d(g.q") <6 max{d(p,p").d(q.q"}.

Thus  max{d(p,p".d(q.q")} <60 max{d(p, p").d(q.q)}.

Hence p=p'and g=q".

Thus (p, g) is the unique common coupled fixed point of F and f-

Case(ii): If fx, = fx and fy, = fy,,, for some n then fx, = F(x,,y,) and fy, =F(y,,x,)so

n+l
that (xn, yn) is a coupled coincidence point of F' and . Now proceeding as in case (i) with

Jxn = p and fy, = g, we can show that (p, ¢) is the unique common coupled fixed point of
F and f.
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