
ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)

On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 1307

Advanced Matching Technique for Trustrace To
Improve The Accuracy Of Requirement

S.Muthamizharasi1, J.Selvakumar2, M.Rajaram3

PG Scholar, Dept of CSE (PG)-ME (Software Engineering), Sri Ramakrishna Engineering College, Coimbatore, India1
Professor, Dept of CSE (PG)-ME (Software Engineering), Sri Ramakrishna Engineering College, Coimbatore, India2

Professor, Anna University, Chennai, India3

Abstract: During software evolution and maintenance,
requirement traceability links become outdated
because developers could not dedicate effort to
updating them. So far, recovering these traceability
links later is intimidated and costly task for
developers. Earlier methods used information
retrieval for recovering traceability links between
free-text requirements and source code. However the
accuracy is limited in such methods. To deal with this,
the proposed system uses Relink, an automatic link
recovery algorithm. The proposed approach is based
on automatically learned feature criteria from explicit
links. In addition the missing links can be found which
affects defect prediction performance. We also
assessed the impact of recovered links on software
maintainability measurement, and established the
result of ReLink affords considerably better accuracy
than those of conventional heuristics.

Keywords: Traceability, Link, Relink, Histrace,
Trumo, DynWing

I. INTRODUCTION

Requirements traceability has obtained much
consideration over the past decade in the scientific
literature. It is defined as “the ability to illustrate and go
after the life of a requirement, in both a forward and
backward direction”. Traceability links among the
requirements of a system and its source code aids in
reducing system comprehension attempt. Until now,
during maintaining and evolving the Software, the
developers can add, remove, or modify features.
Requirement traceability links turn into obsolete because
developers cannot devote effort to updating them.
However recovering these traceability links later is a
daunting task for developers and also they frequently
evolve requirements and source code in a different way.
In fact, they usually do not update requirement-
traceability links with source code. Requirements and

source code subsequently different from each other,
which decreases the textual similarity.

Trustrace is defined as a traceability-recovery
approach between the requirements and source code,
which is mainly used to improve the accuracy of
Traceability. To dynamically discard or rerank the
traceability links reported by an IR technique it uses
heterogeneous sources of information. Trustrace consists
of three parts:

 Histrace
 Trumo
 DynWing

Histrace

To create links between requirements and source
code Histrace mines software repositories by using
information from the repositories. It stores all the
recovered links between requirements and software
repositories in sets.e.g., Histracecommits and
Histracebugs are considered as experts whose opinions
will be used to discard or rerank baseline traceability
links.

Trumo

Trumo merges the requirement traceability links
attained from an IR technique and discards or reranks
them using an expert’s opinions and a trust model
motivated by web-trust models. It compares the similarity
of the recovered links with the result provided by the
experts and with the number of times the link appears in
each expert’s set. This is not fixed to any definite IR-
based traceability-recovery approach and thus it can use
any expert’s view to correct the ranking of recovered
links.

ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)

On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 1308

DynWing

DynWing calculates and allocates weights to the
experts in the trust model dynamically. Thus, dynamic-
weighting techniques are promoted to assign weights for
each link. DynWing initializes each expert’s similarity
value for each link and assigns weights depends on to
these values.

To discover possibilities of recovering the missing
links automatically, a qualitative study has been
conducted to recognize characteristics of explicit links
based on the bug IDs in change logs. The links between
bugs and changes has been found and demonstrated
certain features. For instance, the bug-fixing time is
relatively close to the change logs, change-commit time
and the bug reports share textual similarity, and the
developers accountable for a bug are usually the
committers of the bug-fixing change. According to these
findings, we propose a ReLink, an automatic link
recovery algorithm. Relink automatically learns the
criteria of features from explicit links, and applies the
learned criteria which checks whether the features of an
unknown link assure the criteria. The valid link can be
obtained when the unknown link satisfies all the feature
criteria.

II. RELATED WORK

The literature used many methods, techniques, and
tools to recover the traceability links semiautomatically or
automatically.

Requirements traceability has obtained much notice
over the past decade in the scientific literature. To recover
traceability links between high-level documents various
researchers used information retrieval (IR) techniques,
e.g., [1], [2], [3].

S.A. Sherba and K.M. Anderson in [4] presented a
new approach to traceability based on practices from
information integration and open hypermedia.
Information integration and Open hypermedia offers
generic techniques for establishing, viewing and
maintaining connections between artifacts of software.
This approach permits the automated creation, viewing
and maintenance of traceability relationships in tools in
which software professionals are get to know using on a
daily basis. Though, due to the heterogeneous nature of
this artifact, creating, viewing and maintaining these
relationships is intensely difficult.

Maider et al.in [5] presented an approach to hold
automated traceability maintenance by recognizing
development behavior. Development behavior is officially
specified and changed to definite model elements
triggered a LinkUpdateManager. LinkUpdateManager is
accountable for updating traceability links that are shared
to the changed elements. Though, the authors did not
declare how traceability links are in fact created and
updated.

Lucia et al.in [6] presented an approach supporting
developers to keep source code identifiers and comments
reliable with high-level artifacts. This approach calculates
textual similarity between related high-level artifacts and
source code. The textual similarity supports developers to
develop their source code list.

Maletic and Collard in [7] presented TQL, an XML-
based traceability query language. TQL helps the queries
among multiple artifacts and traceability link types. TQL
has primitives to permit complex query construction and
execution support. In this the following question arised
that how does a change impact the requirements? How
does a change to the requirements impact the safety of the
system?

Gethers in [8] exploited the empirical finding and
presented an integrated approach to combine orthogonal
IR techniques. Thus this has been statistically shown to
create dissimilar results. The presented approach merges
the following IR-based methods: probabilistic Jensen and
Shannon (JS) model, and Relational Topic Modeling
(RTM) and Vector Space Model (VSM), which has not
been used in the framework of traceability link recovery
prior. However this returns that the satisfaction
measurement of user requirements give less result..

III. EXISTING SYSTEM

In existing system Histrace creates links between
the set of requirements and source code using the
software repositories. It considers the requirements
textual descriptions, CVS/SVN commit messages, classes
and bug reports as separate documents.

These sources of information were used to
produce two experts, which we call Histracecommits and
Histracebugs, which use CVS/SVN commit messages and
bug reports respectively. Histrace must link CVS/SVN
commit messages to bug reports before being able to
exploit bug reports for traceability.

ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)

On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 1309

In this Histrace uses regular expressions that are a
simple text matching approach except with reasonable
results, to link CVS/SVN commit messages to bug
reports.

As a result, Histrace takes that developers
allocated to each bug which has a unique ID that is a
sequence of digits recognizable through regular
expressions. The same ID must be preferred to by
developers in the CVS/SVN commit messages.

To link CVS/SVN commit messages to bug
reports, Histrace performs the following steps:

 1) All CVS/SVN commit messages are extracted along
with commit status and committed files.

2) All the bug reports are being extracted, along with
textual descriptions and time/date and

3) Each CVS/SVN commit message and bug reports are
linked by using regular expressions, e.g.

((B)[UG]{0,2}\S*[ID]{0,3}|ID|FIX|PR|#)[\S#=]*[?(0—
9]{4,6})]?

Which is the regular expression refrained to the
numbering and naming conventions used by the
developers. This expression to be updated which matches
with other numbering and naming conventions.

At last Histrace takes out false-positive links by imposing
the following constraint

Fix(e[ds])?|bugs?|problems?|defects?patch”.

The above regular-expression constraint keeps only a
CVS/SVN commit when it contains a keyword. Thus it
returns the bug reports linked to CVS/SVN commit
messages.

IV. PROPOSED SYSTEM

In proposed CVS/SVN commit message and bug
reports are linked using the ReLink method, this method
recovers the link between bug and changes.

A.Features of Links

The proposed method finds the features of links
between bugs and changes. The following features
identify and recover the missing links.

Time Interval: This is the interval between the time (tf)
when a bug was fixed as given by its bug report and the
time (tc) when the corresponding bug fix was committed
at the code repository.This feature is useful because it fix
the bugs after its creation and before closure.

Bug Owner and Change Committer

For linked bugs and changes, there exists a
mapping between the bug owner and the change
committer.

Committer: the person who is responsible for fixing the
bug .The mapping between these two persons could be
identified through mining of software repositories.

Text Similarity

This is the textual similarity between bug reports
and change logs. For the concept of linked bugs and
changes, the natural language descriptions in the bug
report are frequently analogous to those in the change
logs, as they may points to the same issue and share
similar keywords.

B.Link feature mining

The Interval between the Bug-fixing time and the
Change-Commit Time: Even though the interval between
commit time and bug-fixing time is a useful feature for
mining links, identifying the length of such an interval is
a difficult task. It is observed from evaluation that
developers do not often change the status of bugs to
“Fixed” in the bug tracking system abruptly after they
have committed the changes of bug-fixing. The change-
commit time and the bug-fixing time could be far apart.
Further investigations found that most bug comments are
close to bug-fixing activities, while developers frequently
post comments to the bug tracking system to report a bug
fix and inform the bug reporter. Consequently, the bug-
fixing time according to the time of comments in bug
reports were also to be determined.

Mapping between Change Committers and Bug Owners

To identify the mappings between bug owners
and change committers, the comments in bug reports were
examined. These empirical studies found that developers
frequently discuss bug-related issues and declare bug
fixes through the bug tracking system. As a result, it is
likely that one of the commenters is the bug owner who is
liable for bug fixing.

The Similarity between Bug Reports and Change Logs

ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)

On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 1310

In this project, bug reports and change logs are
treated as texts and their similarities are compared. It is
anticipated that for linked bugs and changes, change logs
reveal certain similarity. In order to compute the
similarity between bug reports and change logs, text
features are need to be extracted.

To select the delegate terms in the text, the following
steps to be used to reduce dimensions for long bug reports
and change logs.

1. Remove stop words
2. Use one term to represent all other terms that

have the same stemmer.
3. Use one term to represent all synonymous words

C. Features Criteria Learning
In this the thresholds of features can be described

so that these features can distinguish most of the real
links.
The following algorithm 1 determines the threshold value
of features
Algorithm 1: Threshold determination

DetermineThresholds (Le: links between bugs
and changes identified by the traditional heuristics)
1 Assign the time interval T with a small initial value T0
2 Assign the text similarity threshold S with a small initial
value S0
3 Select links in Le that satisfy T and S, and compute F-
measure
4 Increase S by a small step s1
5 Repeat steps 3-4 until the maximum threshold Sm is
reached
6 Increase T by a small step s2
7 Repeat steps 3-6 until T reaches the maximum threshold
Tm
8 Choose the threshold values Tt and St that achieve the
best F-measure
9 Return Tt and St.

The mappings between bug owners and change
committers were also learnt from the explicit links which
is identified by the conventional heuristics. These
mappings can be determined by using following
algorithm2:
Algorithm 2:Mapping Determination

DetermineMappings (Le: links between bugs and
changes identified by the traditional heuristics)
1 Initialize the set of mappings M=Φ
2 For each link l in Le
3 For each mapping m between l’s change committer
and bug commenter
4 If (m is not in M)
5 Add m to M
6 EndIf

7 EndFor
8 EndFor
9 Return M
D.Recovering the Missing Links

To automatically identify the links between bugs
and changes, a ReLink has been proposed which is a link
recovery approach. ReLink is based on the identified
features. The algorithm 3 of ReLink is described below:

Algorithm3: Relink approach
Store all possible links between bugs and links in L
2 Initialize the set Lr =Φ
3 Mine links Le between bugs and changes using
the traditional heuristics
4 DetermineThresholds (Le)
5 DetermineMappings(Le)
6 For each link l in (L – Le)
7 If there is mapping between l’s bug commenter and l’s
change committer
8 If any of l’s bug comment time is within the time
interval threshold Tt
9 If the text similarity between l’s bug report and
change log is within threshold St
10 add l to Lr
11 EndIf
12 EndIf
13 EndIf
14 EndFor
15 Return Lr + Le

V. EXPERIMENTAL RESULT

The proposed system can be evaluated based on
traceability links such as baseline requirements, JSM and
VSM. The qualitative analyses of the proposed system
results and discuss observations from the empirical
evaluation of Trustrace.

Data Set Quality Analysis

The empirical evaluation of proposed system
supports the Trustrace combined with IR techniques is
effective in increasing the precision and recall values of
some baseline requirements traceability links. This uses
both JSM and VSM to recover traceability links and
compare their results in isolation with those of Trustrace.
The proposed system performs better than existing
approach in terms of precision, recall and f-measure.

The following comparison table1 provide the estimated
values for the existing and proposed approach.

ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)

On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

TABLE 1

 COMPARISION TABLE

Metrics Existing system Proposed system

Base
line
IR

JSM VS
M

Base
line
IR

JSM VS
M

Precisio
n

59.5 73.1
4

78.
5

61.2 77.14
3

86.
1

Recall 65.1 78.5
2

83.
5

66.3 78.92 85

Fmeasur
e

61.3 75.7
4

81.
3

63.1 78.02
5

84.
5

Fig.1 Precision comparison

The above graph in figure 1 shows precision rate in which
the proposed system performs higher than existing in the
traceable links of Baseline IR, JSM and VSM
respectively.

Fig. 2 Recall comparision

The above graph in figure 2 shows recall rate in which
the proposed system performs higher than existing in the

traceable links of Baseline IR, JSM and VSM
respectively.

Fig. 3 F-measure comparison

The above graph in figure 3 shows f-measure rate in
which the proposed system performs higher than existing
in the traceable links of Baseline IR, JSM and VSM
respectively.

VI. CONCLUSION

In this paper, a traceability-recovery approach between
requirements and source code is supported on three
conjectures: Histrace, Trumo, and DynWing. The
proposed Relink recovers the link between bug and
changes in Histrace which creates links between the set of
requirements and source code using the software
repositories .The features of links are identified and
mined in the above discussion. Finally missing link can be
learned by using Relink method followed by determining
the Threshold and mapping criteria’s. Experimental result
for various traceability links has been demonstrated .In
that proposed system outperforms better than existing
system.

REFERENCES

[1]. N. Ali, Y.-G. Gue´he´neuc, and G. Antoniol, “Trust-Based
Requirements Traceability,” Proc. 19th IEEE Int’l Conf. Program
Comprehension, S.E. Sim and F. Ricca, eds., pp. 111-120, June
2011.(2)

[2]. G. Antoniol, G. Canfora, G. Casazza, A.D. Lucia, and E. Merlo,
“Recovering Traceability Links between Code and
Documentation,” IEEE Trans. Software Eng., vol. 28, no. 10, pp.
970-983, Oct. 2002.(3)

[3]. Marcus and J.I. Maletic, “Recovering Documentation-to- Source-
Code Traceability Links Using Latent Semantic Indexing,” Proc.
25th Int’l Conf. Software Eng., pp. 125-135, 2003(4)

[4]. S.A. Sherba and K.M. Anderson, “A Framework for Managing
Traceability Relationships between Requirements and
Architectures,” Proc. Second Int’l Software Requirements to
Architectures Workshop, part of Int’l Conf. Software Eng., pp.
150-156, 2003,(30)

0
50

100

Re
Ca

ll

Existing
System

Proposed
System

0

100

F-
M

ea
su

re Existing
System

Proposed
System

0
20
40
60
80

100

Pr
ec

is
io

n

Exisitng
system

Proposed
system

ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)

On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 1312

[5]. P. Mader, O. Gotel, and I. Philippow, “Enabling Automated
Traceability Maintenance by Recognizing Development Activities
Applied to Models,” Proc. 23rd IEEE/ACM Int’l Conf. Automated
Software Eng., pp. 49-58, 2008.(31)

[6]. A.D. Lucia, M.D. Penta, and R. Oliveto, “Improving Source Code
Lexicon via Traceability and Information Retrieval,” IEEE Trans.
Software Eng., vol. 37, no. 2, pp. 205-227, Mar. 2011.(32)

[7]. J.I. Maletic and M.L. Collard, “TQL: A Query Language to
Support Traceability,” Proc. ICSE Workshop Traceability in
Emerging Forms of Software Eng., pp. 16-20, 2009.(6)

[8]. M. Gethers, R. Oliveto, D. Poshyvanyk, and A.D. Lucia, “On
Integrating Orthogonal Information Retrieval Methods to Improve
Traceability Recovery,” Proc. 27th IEEE Int’l Conf. Software
Maintenance, pp. 133-142, Sept. 2011.(9)

